
Text-guided Controllable Mesh Refinement for Interactive 3D Modeling
Yun-Chun Chen1,2     Selena Ling1,2     Zhiqin Chen2     Vladimir G. Kim2     Matheus Gadelha2     Alec Jacobson1,2

- Input: A coarse 3D mesh and a text prompt

- Goal: Create a 3D mesh by adding more geometric detail to the input 
            coarse mesh guided by the input text prompt
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Table 1. �antitative results. Our method achieves the best results on
CLIP similarity while being approximately two orders of magnitude faster.

Method CLIP similarity " Run time (sec) #

Magic3D 0.2327 ± 0.0393 5597
Latent-NeRF 0.2367 ± 0.0415 3697
Fantasia3D 0.2556 ± 0.0335 2971
Ours 0.2666 ± 0.0317 32

function L with three components:

L = Ln + Lr= + Lsil . (3)

For simplicity, wewill slightly abuse the notation and de�ne k0 � 1k1
as the sum of the absolute di�erences between all the pixels in image
0 and image 1. Thus, Ln is the ✓1 loss between the normal rendering
of the mesh and the normal generated by Gmv:
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Lr= is the ✓1 loss between the image gradient of the normal ren-
dering of the mesh and the image gradient of the target normal:
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We found experimentally that Lr= is a crucial component for

capturing the higher frequency details present in the generated
normal images. See Figure 7 for an example comparing the mesh
optimization procedure with and without this component. Lsil is
the ✓1 loss between the silhouette rendering RB of the mesh and the
foreground segmentation mask S[�rgb,\ ] predicted from the RGB
image �rgb,\ (generated by Gmv) using Segment Anything [Kirillov
et al. 2023]:
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After each optimization iteration, we follow continuous remesh-
ing [Pal�nger 2022] to adaptively remesh the mesh" .

Implementation details. We implement our mesh optimization
algorithm in PyTorch. We run mesh optimization for 2,000 iterations.
The mesh optimization process takes around 20 seconds on one
single NVIDIA 3080Ti GPU.

4 EXPERIMENTS
In this section, we analyze the capabilities of our method and in-
vestigate how modifying various components impacts its overall
performance. We start by presenting a quantitative and qualitative
comparisonwith the current state-of-the-art in the text-guidedmesh
re�nement task. Then, we show how the user can apply di�erent
guidance levels to trade o� between detail generation and original
shape preservation. Finally, we present a few additional results and
applications. We will make our code and trained model weights
available to the public upon acceptance.
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Fig. 6. Multi-view control. Our method is capable of generating details
using the full initial shape as guidance. Notice how the back legs of the
cat and its tail follow the input coarse mesh (in green). On the other hand,
Wonder3D results yield reasonable renditions when visualized from the
initial viewpoint \B (top row) but clearly fail to follow the coarse geometric
guidance when seen from other views (bo�om row).

4.1 Text-guided Mesh Refinement
Baseline methods. While there are methods that rely on super-

visory signals from joint text-image embeddings [Gao et al. 2023;
Khalid et al. 2022], recent work has shown that better reconstruc-
tion quality comes from methods using score distillation sampling
(SDS) [Poole et al. 2023]. For this reason, we mainly compare with
methods using SDS. We choose Latent-NeRF [Metzer et al. 2023],
Magic3D [Lin et al. 2023] and Fantasia3D [Chen et al. 2023a] as the
competing methods. Latent-NeRF introduces global shape guidance
through a sketch shape and a loss between the underlying NeRF’s
occupancy value and the winding number to the sketch shape’s sur-
face. We use their o�cial implementation and their default setting
to generate results for comparison with our method. Fantasia3D has
their shape-guided 3D generation procedure implemented by initial-
izing their initial SDF representation with an input shape. However,
they don’t enforce any control mechanism during the generation. As
a result, their generation can diverge from the input shape’s outline.
Magic3D introduced a two-stage method for text-to-3D generation.
Their second stage re�nes the coarse shape generated from the �rst
stage via direct mesh optimization with di�erentiable rendering
and it is therefore comparable to our method. For a fair comparison,
we remove the �rst stage and initialize the Magic3D’s second stage
geometry with the guidance shape in a randomly initialized color
�eld. For both Magic3D and Fantasia3D, we use the public imple-
mentation by threestudio [Guo et al. 2023]. Notice that all these
methods rely on the score distillation sampling which usually takes
more than 30 minutes per generation while our method takes less
than a minute. For a runtime comparison, please refer to Table 1.

Quantitative results. Table 1 reports the CLIP [Radford et al. 2021]
similarity result and the run time of each method. We use the public
implementation of the CLIP similarity metric from Zhengwentai
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- Pre-trained text-to-image models generate images with rich geometric detail

- First stage: Single-view RGB generation for fast preview

- Second stage: Multi-view normal generation

- Third stage: Mesh optimization
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- Zhang et al. Adding Conditional Control to Text-to-Image Diffusion Models.

- Metzer et al. Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures.

- Chen et al. Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation.

- Lin et al. Magic3D: High-Resolution Text-to-3D Content Creation.
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