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Joint semantic matching and object co-segmentation

@ Input: a collection of images containing objects of a specific category.

@ Goal: establish correspondences between object instances and
segment them out.

@ Setting: weakly supervised (no ground-truth keypoint
correspondences and object masks are used for training).

A collection of images

Semantic matching Object co-segmentation
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Issues with semantic matching and object co-segmentation

@ Semantic matching: suffer from background clutters.

@ Object co-segmentation: segment only the most discriminative
regions.

Input Semantic matching Co-segmentation
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Motivation of joint learning

@ Semantic matching: dense correspondence fields provide supervision
by enforcing consistency between the predicted object masks.

@ Object co-segmentation: object masks allow the model to focus on
matching the foreground regions.

Separate learning  Joint learning (Ours)  Separate learning  Joint learning (Ours)
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Semantic matching - early methods

@ Hand-crafted descriptor based methods: leverage SIFT or HOG
features along with geometric matching models to solve
correspondence matching by energy minimization.

@ Trainable descriptor based approaches: adopt trainable CNN features
for semantic matching.

@ Limitation: require manual correspondence annotations for training.

pocy Z-
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Grid cells (Fast and robust) Pixels (Accurate)

SIFT Flow [1] DSP [2] UCN [3]

[1] Liu et al. SIFT Flow: Dense Correspondence across Scenes and its Applications.
TPAMI'11.

[2] Kim et al. Deformable Spatial Pyramid Matching for Fast Dense Correspondences.
CVPR'13.

[3] Choy et al. Universal Correspondence Network. NeurlPS'16.
8/48



Semantic matching - recent approaches
e Estimate geometric transformations (affine or TPS) using CNN or
RNN for semantic alignment.
@ Adopt multi-scale features for establishing semantic correspondences.

@ Limitation: suffer from background clutters and inconsistent
bidirectional matching.

Source

Feature
Extraction

Q,

Target

CNNGeo [4] RTNs [5] HPF [6]

[4] Rocco et al. Convolutional neural network architecture for geometric matching.
CVPR'17.

[5] Kim et al. Recurrent Transformer Networks for Semantic Correspondence. NeurlPS'18.

[6] Min et al. Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural
Features. ICCV'19.
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Object co-segmentation - early methods
@ Graph based methods: construct a graph to encode the relationships
between object instances.

o Clustering based approaches: assume that common objects share
similar appearances and achieve co-segmentation by finding tight
clusters.

o Limitation: lack of an end-to-end trainable pipeline.

MFC [7] GO-FMR [8]

[7] Chang et al. Optimizing the decomposition for multiple foreground cosegmentation.
CVIU'15.

[8] Quan et al. Object Co-segmentation via Graph Optimized-Flexible Manifold Ranking.
CVPR'16.

[9] Tao et al. Image Cosegmentation via Saliency-Guided Constrained Clustering with
Cosine Similarity. AAAI'17.
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Object co-segmentation - recent approaches

o Leverage CNN models with CRF or attention mechanisms to achieve
object co-segmentation.

@ Limitation: require foreground masks for training and not applicable
to unseen object categories.
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DDCRF [10] DOCS [11] CA [12]
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[10] Yuan et al. Deep-dense Conditional Random Fields for Object Co-segmentation.
IJCAI'17.

[11] Li et al. Deep object co-segmentation. ACCV'18.

[12] Chen et al. Semantic Aware Attention Based Deep Object Co-segmentation.
ACCV'18.
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Overview of the MaCoSNet

@ A two-stream network:
» (top) semantic matching network.
» (bottom) object co-segmentation network.

@ Input: an image pair containing objects of a specific category.

@ Goal: establish correspondences between object instances and
segment them out.

@ Supervision: image-level supervision (i.e., weakly supervised).
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Shared feature encoder

@ Given an input image pair, we first use the feature encoder £ to
encode the content of each image.

@ We then apply a correlation layer for computing matching scores for
every pair of features from two images.
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Overview of the semantic matching network

@ Our semantic matching network is composed of a transformation
predictor G.

@ The transformation predictor G takes the correlation maps as inputs
and estimates the geometric transformations that align the two

images.
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Geometric transformation

@ Our transformation predictor G is a cascade of two modules predicting
an affine transformation and a thin plate spline (TPS) transformation,
respectively [4].

@ The estimated geometric transformation allows our model to warp a
source image so that the warped source image aligns well with the
target image.

Source Warp Target Source Warp Target

[4] Rocco et al. Convolutional neural network architecture for geometric matching.

CVPR'17.
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Overview of the object co-segmentation network

@ We use the fully convolutional network decoder D for generating
object masks.

@ To capture the co-occurrence information, we concatenate the
encoded image features with the correlation maps.

@ The decoder D then takes the concatenated features as inputs to
generate object segmentation masks.
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Training the semantic matching network

@ There are two losses to train the semantic matching network:

» foreground-guided matching loss Latching-
» forward-backward consistency loss Lcycle—consis-
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Foreground-guided matching loss Ly atching

@ Minimize the distance between corresponding features based on the
estimated geometric transformation.

@ Leverage the predicted object masks to suppress the negative impacts
caused by background clutters.
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Foreground-guided matching loss Ly atching

Given the estimated geometric transformation Tag, we can identify
and remove geometrically inconsistent correspondences.

Consider a correspondence with the endpoints (p € Pa,q € Pg),
where P4 and Pg are the domains of all spatial coordinates of f4 and
fg, respectively.

We introduce a correspondence mask my € Rhaxwax(hsxwe) 14
determine if the correspondences are geometrically consistent with
transformation Txp.

L if[[Tag(p) —al < ¢,
0, otherwise.

ma(p,q) :{ (1)

A correspondence (p, q) is considered geometrically consistent with
transformation Tag if its projection error || Tag(p) — q|| is not larger
than the threshold ¢.
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Foreground-guided matching loss Ly atching

For the correspondence with the endpoints (p, q), the correlation map
Sas(p,q) and the correspondence mask ma(p,q) capture its
appearance and geometric consensus, respectively.

When focusing on point p € P4, we compute the matching score of
location p by

sa(p) = > ma(p.q) - Sas(p,q). (2)

qePp

To suppress the effect of background clutters, we leverage the object
masks My and Mp estimated by the decoder D to focus on matching
the foreground regions.

The foreground-guided matching loss Lyatching is defined as

Cansaing =~ 3 5a() Malp) + Y- sela) Me(a)). (3

pEPa q€Pg

The negative sign indicates that maximizing the matching score is

equivalent to minimizing the foreground-guided matching loss.
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Forward-backward consistency loss Leycle—consis

@ Regularize the network training by enforcing the predicted geometric
transformations to be consistent between an image pair.

@ Enforce the property Tga(Tas(p)) = p for any coordinate p € Pa.
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@ The idea of forward-backward consistency between an image pair can
be extended to the transitivity consistency across multiple images,
e.g., three images.

@ Given three images I, Ig, and I¢, we first estimate three geometric
transformations Tag, Tgc, and Tca.

@ We then enforce the property Tca(Tac(Tas(p))) =~ p for any
coordinate p € Py.

Ltrans—consis = Z H TCA TBC(TAB( ))) - p” (5)
ol 2
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Details of the consistency losses

@ For the transitivity consistency loss Lirans—consis, the input triplets are
randomly selected within a mini-batch.

@ We sample 10 x 10 = 100 spatial coordinates for computing the
forward-backward consistency loss Lcycle—consis and the transitivity
consistency loss Lirans—consis-
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Training the object co-segmentation network

@ There is one loss to train the object co-segmentation network:
» perceptual contrastive loss Leontrast-
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Perceptual contrastive loss Leontrast

@ Given the feature maps f4 and fg and the correlation maps Sag and
Sga, we first generate the concatenated features Ca = [fa, Sag] and
CB = [vasBA]-

@ The decoder D then takes the concatenated feature maps C4 and Cg
as inputs and produces object masks My and Mg for input images /4
and /g, respectively.
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Perceptual contrastive loss Leontrast

o To facilitate the decoder D segmenting the co-occurrent objects, we
exploit two properties:

> high foreground object similarity across images.
» high foreground-background discrepancy within each image.

@ We first generate the object image /° and the background image l,-b
for each image /; by

I =M@l and 1P =(1— M)l for i€ {A B}, (6)

where ® denotes the pixel-wise multiplication between the two
operands.

@ We apply an ImageNet-pretrained ResNet-50 network F to /° and l,-b
to extract their semantic feature vectors F(1°) and F(/P),
respectively.
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Perceptual contrastive loss Leontrast
@ The perceptual contrastive loss Leontrast is defined as

Lcontrast = dXB + dA_B’ (7)

where the two criteria are respectively imposed on dXB and d,g:

1 o o
dag = E”]:(IA) — F(I2)|? and (8)

7y = max <07 m = 52 (IF05) = FURI? + 1708) - f(/§>|2)>. ©)

@ The constant c is the dimension of the semantic features produced by
F, and the margin m is the cutoff threshold.

o —
’A= B [af | FaD
s
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Cross-network training

@ Using the perceptual contrastive loss Leontrast alone for object
co-segmentation may generate object masks that highlight only the

discriminative parts rather than the entire objects.

@ We leverage the dense correspondence fields estimated from semantic
matching to provide supervision for object co-segmentation.
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Cross-network consistency 10ss Liask—consis

@ Propose a cross-network consistency loss Liask—consis that bridges the
outputs of the semantic matching co-segmentation networks.

@ Predicted object masks M4 and Mg should be geometrically
consistent with the learned geometric transformations Tag and Tga:
apply Tag to M4 and obtain M4 to match Mg

@ The cross-network consistency loss Liask_consis 1S defined as
Etaskfconsis = Ebce(MAv MB) + ﬁbce(MBv MA); (10)

where Ebce(MA, Mpg) computes the binary cross-entropy loss between
My and Mg, and is defined as

Loce(Ma, Mp) = — HBiVVB (Z Ma(i,j) log (MB('}J'))
iJ

+ Z (1 - I\7IA(i,j)> log (1 - MB(i,j))>.

(11)
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Full training loss £

@ The full training loss £ is composed of five loss functions defined by

L= 'Cmatching + )‘cycle : ['cycle—consis + )\trans : Ltransfconsis (12)
+ )\contrast ’ Lcontrast + Atask ’ Ltask—consis»

where Acycle, Atrans: Acontrast: and Agagk are the hyper-parameters
used to control the relative importance of the respective loss terms.
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Evaluation metrics and datasets

o Evaluation metrics:
» semantic matching:
* the percentage of correct keypoints (PCK).
> object co-segmentation:
* the precision P.
* the Jaccard index 7.
o Datasets:
> joint semantic matching and object co-segmentation:
* TSS.
» semantic matching:

* PF-PASCAL.
* PF-WILLOW.
* SPair-71k.

> object co-segmentation:
* Internet.
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Evaluation of joint matching and co-segmentation

Table: Experimental results of semantic matching on the TSS dataset.

Method \ Descriptor  Supervision \ FG3DCar \ Jobs \ PASCAL \ Avg.
SIFT Flow SIFT - 0.632 0.509 0.360 0.500
DSP SIFT - 0.487 0.465 0.382 0.445
TSS HOG - 0.829 0.595 0.483 0.636
DAISY DAISY - 0.636 0.373 0.338 0.449
UCN GoogleNet Strong 0.853 0.672 0.511 0.679
FCSS FCSS Strong 0.830 0.656 0.494 0.660
Proposal Flow FCSS Strong 0.839 0.635 0.582 0.685
DCTM FCSS Strong 0.891 0.721 0.610 0.740
SCNet-AG+ VGG-16 Strong 0.776 0.608 0.474 0.619
CNNGeo ResNet-101 Strong 0.886 0.758 0.560 0.735
CNNGeo w/ Inlier | ResNet-101 Weak 0.892 0.758 0.562 0.737
Ours w/o co-seg ResNet-101 Weak 0.907 0.781 0.565 0.751
Ours ResNet-101 Weak 0.908 0.783 0.615 0.769
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Evaluation of joint matching and co-segmentation

Table: Experimental results of object co-segmentation on the TSS dataset.

Method Descriptor FG3DCar JODS PASCAL Avg.
P J P J P J P J

SIFT Flow SIFT 0.661 0.42 | 0.557 0.24 | 0.628 0.41 | 0.615 0.36
DSP SIFT 0.502 0.29 | 0.454 022 | 0496 0.34 | 0.484 0.28
Hati et al. SIFT 0.785 047 | 0.778 031 | 0.701 0.31 0.755 0.36
Chang et al. SIFT 0.872 0.67 | 0.851 0.52 | 0.723 0.40 | 0.815 0.53
Jerripothula et al. SIFT 0.913 0.78 | 0.900 0.65 | 0.880 0.73 | 0.898 0.72
Faktor et al. HOG 0.873 0.69 | 0.859 0.54 | 0.771 0.50 | 0.834 0.58
Joulin et al. SIFT 0.651 0.46 | 0.626 0.32 | 0.587 0.40 | 0.621 0.39
MRW SIFT 0.784 0.63 | 0.730 0.46 | 0.804 0.66 | 0.773 0.58
DFF DAISY 0.704 0.33 | 0.696 0.21 | 0.601 0.21 | 0.667 0.25
TSS HOG 0.877 0.76 | 0.761 0.50 | 0.778 0.65 | 0.805 0.63
Ours w/o matching | ResNet-101 | 0.958 0.88 | 0.911 0.71 | 0.829 0.61 | 0.899 0.73
Ours ResNet-101 | 0.963 0.90 | 0.940 0.77 | 0.939 0.86 | 0.947 0.84

35/48



Visual results of joint learning vs. separate learning

=

Ground truth w/0 matching w/ matching Images Ground truth w/o matching w/ matching
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Evaluation of co-segmentation on Internet

Table: Experimental results of object co-segmentation on the Internet dataset.

Method Descriptor Airplane Car Horse Avg.
P J P J P J P J

DOCS VGG-16 0.946 0.64 | 0.940 0.83 0.914 0.65 | 0.933 0.70
Sun et al. HOG 0.886 0.36 | 0.870 0.73 0.876 0.55 | 0.877 0.55
Joulin et al. SIFT 0.475 0.12 | 0.592 0.35 0.642 0.30 | 0.570 0.24
Kim et al. SIFT 0.802 0.08 | 0.689 0.0004 | 0.751 0.06 | 0.754 0.05
Rubinstein et al. SIFT 0.880 0.56 | 0.854 0.64 0.828 0.52 | 0.827 0.43
Chen et al. HOG 0.902 0.40 | 0.876 0.65 0.893 0.58 | 0.890 0.54
Quan et al. SIFT 0.910 0.56 | 0.885 0.67 0.893 0.58 | 0.896 0.60
Hati et al. SIFT 0.777 0.33 | 0.621 0.43 0.738 0.20 | 0.712 0.32
Chang et al. SIFT 0.726  0.27 | 0.759 0.36 0.797 0.36 | 0.761 0.33
MRW SIFT 0.528 0.36 | 0.647 0.42 0.701 0.39 | 0.625 0.39
Jerripothula et al. SIFT 0.818 0.48 | 0.847 0.69 0.813 0.50 | 0.826 0.56
Hsu et al. VGG-16 0.936 0.66 | 0.914 0.79 0.876 0.59 | 0.909 0.68
Ours ResNet-101 | 0.941 0.65 | 0.940 0.82 0.922 0.63 | 0.935 0.70
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Visual comparisons of object co-segmentation
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Figure: Visual comparisons on the TSS dataset.
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Figure: Visual comparisons on the Internet dataset.
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Evaluation of semantic matching on PF-PASCAL

Table: Experimental results of semantic matching on the PF-PASCAL dataset.

Method | Descriptor | aero bike bird boat bottle bus car cat chair cow dtable dog horse moto person plant sheep sofa train  tv | mean
Proposal Flow-+LOM HOG 733 744 544 509 496 738 729 636 461 798 425 480 683 663 421 621 652 571 644 580 | 625
UcN GoogleNet | 648 587 428 596 47.0 422 610 456 499 520 485 495 532 727 530 414 833 490 730 66.0 | 556
A2Net ResNet-101 | - - - - - - - - - - - - - - - - - - - | 500
GSF ResNet-50 | - - - - - - - - - - - - - - - - - - - - | 665
SCNet-AG+ VGG-16 | 855 844 663 70.8 574 827 823 716 543 958 552 505 686 750 563 604 600 737 665 767 | 722
CNNGeo ResNet-101 | 830 822 8L1 500 57.8 799 928 775 447 854 281 698 654 771 640 652 1000 508 443 544 | 695
CNNGeo w/ Inlier ResNet-101 | 847 889 809 556 766 895 939 796 520 854 281 718 670 751 663 705 1000 621 623 6L1 | 748
NC-Net ResNet-101 | 86.8 867 867 556 828 886 938 87.1 543 875 432 820 641 792 7L1 710 600 542 750 828 | 789
WeakMatchNet ResNet-101 | 856 89.6 821 833 859 925 930 802 522 854 552 752 640 779 672 738 1000 653 693 611 | 78.0
Ours ResNet-101 | 83.4 874 853 722 766 946 947 866 549 896 526 802 706 792 733 705 1000 630 663 644 | 79.0
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Evaluation of semantic matching on PF-WILLOW

Table: Experimental results of semantic matching on the PF-WILLOW dataset.

Method Descriptor | @ =0.05 | a =01 | a =0.15
SIFT Flow VGG-16 0.324 0.456 0.555
CNNGeo ResNet-101 0.448 0.777 0.899
CNNGeo w/ Inlier ResNet-101 0.477 0.812 0.917
Proposal Flow + LOM HOG 0.284 0.568 0.682
UCN GoogleNet 0.291 0.417 0.513
SCNet-AG+ VGG-16 0.386 0.704 0.853
A2Net ResNet-101 - 0.680 -
WeakMatchNet ResNet-101 0.484 0.816 0.918
RTNs ResNet-101 0.413 0.719 0.862
NC-Net ResNet-101 0.514 0.818 0.927
Ours ResNet-101 0.538 0.854 0.939
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Evaluation of semantic matching on SPair-71k

Table: Experimental results of semantic matching on the SPair-71k dataset.

Method ‘ Fine-tune ‘ Avg.
CNNGeo 18.1
A2Net 20.1
CNNGeo w/ Inlier 21.1
NC-Net 26.4
Ours 25.8
CNNGeo v 20.6
A2Net v 223
CNNGeo w/ Inlier v 20.9
NC-Net v 20.1
Ours v 26.6
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Visual comparisons of semantic matching

Ground truth ‘WeakMatchNet [79] NC-Net [41] Ours Ground truth ‘WeakMatchNet [79] NC-Net [41] Ours

Figure: Visual comparisons on the PF-PASCAL (top row) and PF-WILLOW
(bottom row) datasets.
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Sensitivity analysis on hyperparameters for training loss
@ We analyze the sensitivity of our model by varying the value of each
hyperparameter in the full training loss.
L= ‘Cmatching + Acycle : Ecycle—consis + )\trans : ﬁtransfconsis (13)

+ )\contrast . ﬁcontrast + )\task . ‘Ctask—consisa

Semantic Matching on PF-PASCAL Object Co-segmentation on TSS

o
00 25 50 100 200 400 100.0 1000.0

0
00 25 50 100 200 40.0 100.0 1000.0

00 25 50 100 200 40.0 100.0 1000.0

Semantic matching (PCK)  Co-segmentation (P) Co-segmentation (J)

@ For semantic matching, the three most important hyperparameters
are )\matchingv )\cycle- and Agrans.
@ For object co-segmentation, the two most important hyperparameters

are )\contrast and >\task-
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Sensitivity analysis on the cutoff threshold m

@ We analyze the sensitivity of our model against the cutoff threshold
m in the perceptual contrastive loss Leontrast-

ﬁcontrast = dXB + dA_Ba (14)

dfs = TIF(5) ~ FUIR)IP and (15)
da = max (o, m = e (IF05) = FURIZ + 1708) - f(/§)||2)>. (16)
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Limitations

@ Our method may not work for images that contain multiple object
instances.

@ For semantic matching, our method predicts only one transformation
matrix for an image pair. When multiple object instances are present,
our method may not work well since multiple geometric
transformations are required.

@ For object co-segmentation, our method may fail if there exist
background patches that are visually similar to the foreground objects.
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Future work

@ Joint semantic matching and object co-segmentation from images
containing multiple object instances can potentially be addressed by
instance-level semantic matching methods and instance
co-segmentation approaches.

NC-Net [13] DeepCO? [14]

[13] Rocco et al. Neighbourhood Consensus Networks. NeurlPS'18.

[14] Hsu et al. DeepCO3: Deep Instance Co-segmentation by Co-peak Search and
Co-saliency Detection. CVPR'19.
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Conclusions

@ We propose a weakly-supervised and end-to-end trainable network for
joint semantic matching and object co-segmentation.

@ To couple the training of both tasks, we introduce a cross-network
consistency loss to encourage the two-stream network to produce a
consistent explanation of the given image pair.

@ The network training requires only weak image-level supervision,
making our method scalable to real-world applications.

@ Experimental results demonstrate that our approach performs
favorably against the state-of-the-art methods on both semantic
matching and object co-segmentation tasks.
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