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Joint semantic matching and object co-segmentation

Input: a collection of images containing objects of a specific category.

Goal: establish correspondences between object instances and
segment them out.

Setting: weakly supervised (no ground-truth keypoint
correspondences and object masks are used for training).

A collection of images Semantic matching Object co-segmentation
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Issues with semantic matching and object co-segmentation

Semantic matching: suffer from background clutters.

Object co-segmentation: segment only the most discriminative
regions.

Input Semantic matching Input Co-segmentation
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Motivation of joint learning

Semantic matching: dense correspondence fields provide supervision
by enforcing consistency between the predicted object masks.

Object co-segmentation: object masks allow the model to focus on
matching the foreground regions.

Separate learning Joint learning (Ours) Separate learning Joint learning (Ours)
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Semantic matching - early methods
Hand-crafted descriptor based methods: leverage SIFT or HOG
features along with geometric matching models to solve
correspondence matching by energy minimization.

Trainable descriptor based approaches: adopt trainable CNN features
for semantic matching.

Limitation: require manual correspondence annotations for training.

SIFT Flow [1] DSP [2] UCN [3]

[1] Liu et al. SIFT Flow: Dense Correspondence across Scenes and its Applications.
TPAMI’11.

[2] Kim et al. Deformable Spatial Pyramid Matching for Fast Dense Correspondences.
CVPR’13.

[3] Choy et al. Universal Correspondence Network. NeurIPS’16.
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Semantic matching - recent approaches
Estimate geometric transformations (affine or TPS) using CNN or
RNN for semantic alignment.

Adopt multi-scale features for establishing semantic correspondences.

Limitation: suffer from background clutters and inconsistent
bidirectional matching.

CNNGeo [4] RTNs [5] HPF [6]

[4] Rocco et al. Convolutional neural network architecture for geometric matching.
CVPR’17.

[5] Kim et al. Recurrent Transformer Networks for Semantic Correspondence. NeurIPS’18.

[6] Min et al. Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural
Features. ICCV’19.
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Object co-segmentation - early methods
Graph based methods: construct a graph to encode the relationships
between object instances.

Clustering based approaches: assume that common objects share
similar appearances and achieve co-segmentation by finding tight
clusters.

Limitation: lack of an end-to-end trainable pipeline.

MFC [7] GO-FMR [8] SGC3 [9]

[7] Chang et al. Optimizing the decomposition for multiple foreground cosegmentation.
CVIU’15.

[8] Quan et al. Object Co-segmentation via Graph Optimized-Flexible Manifold Ranking.
CVPR’16.

[9] Tao et al. Image Cosegmentation via Saliency-Guided Constrained Clustering with
Cosine Similarity. AAAI’17.
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Object co-segmentation - recent approaches

Leverage CNN models with CRF or attention mechanisms to achieve
object co-segmentation.

Limitation: require foreground masks for training and not applicable
to unseen object categories.

DDCRF [10] DOCS [11] CA [12]

[10] Yuan et al. Deep-dense Conditional Random Fields for Object Co-segmentation.
IJCAI’17.

[11] Li et al. Deep object co-segmentation. ACCV’18.

[12] Chen et al. Semantic Aware Attention Based Deep Object Co-segmentation.
ACCV’18.
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Overview of the MaCoSNet
A two-stream network:

I (top) semantic matching network.
I (bottom) object co-segmentation network.

Input: an image pair containing objects of a specific category.

Goal: establish correspondences between object instances and
segment them out.

Supervision: image-level supervision (i.e., weakly supervised).
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Shared feature encoder

Given an input image pair, we first use the feature encoder E to
encode the content of each image.

We then apply a correlation layer for computing matching scores for
every pair of features from two images.

Transformation Predictor

Bi-directional 
C

orrelation

Encoder

hA
wA

d
fA

hB
wB

d
fB

IA

IB

hA
wA

hB × wB

SAB

hB
wB

hA × wA

SBA

hA
wA

hB × wB SAB

hB wB
hA × wA SBA

TAB

TBA

d CA

d

hB × wB

hA
wA

hB
wB

hA × wA CB

ℰ

ℰ

𝒢

𝒢

𝒟

𝒟

Decoder

𝐼!"

𝐼#"

Matching

ℒ!"!#$%!&'()(

Co-segmentation

ℱ ℒ!&'*+,(*

Fixed Extractor

ℒ-,*!.)'/
ℒ*,(0%!&'()(

14 / 48



Overview of the semantic matching network

Our semantic matching network is composed of a transformation
predictor G.

The transformation predictor G takes the correlation maps as inputs
and estimates the geometric transformations that align the two
images.
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Geometric transformation
Our transformation predictor G is a cascade of two modules predicting
an affine transformation and a thin plate spline (TPS) transformation,
respectively [4].

The estimated geometric transformation allows our model to warp a
source image so that the warped source image aligns well with the
target image.

[4] Rocco et al. Convolutional neural network architecture for geometric matching.
CVPR’17.
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Overview of the object co-segmentation network

We use the fully convolutional network decoder D for generating
object masks.

To capture the co-occurrence information, we concatenate the
encoded image features with the correlation maps.

The decoder D then takes the concatenated features as inputs to
generate object segmentation masks.
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Training the semantic matching network

There are two losses to train the semantic matching network:
I foreground-guided matching loss Lmatching.
I forward-backward consistency loss Lcycle−consis.
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Foreground-guided matching loss Lmatching

Minimize the distance between corresponding features based on the
estimated geometric transformation.

Leverage the predicted object masks to suppress the negative impacts
caused by background clutters.
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Foreground-guided matching loss Lmatching

Given the estimated geometric transformation TAB , we can identify
and remove geometrically inconsistent correspondences.

Consider a correspondence with the endpoints (p ∈ PA,q ∈ PB),
where PA and PB are the domains of all spatial coordinates of fA and
fB , respectively.

We introduce a correspondence mask mA ∈ RhA×wA×(hB×wB) to
determine if the correspondences are geometrically consistent with
transformation TAB .

mA(p,q) =

{
1, if ‖TAB(p)− q‖ ≤ ϕ,
0, otherwise.

(1)

A correspondence (p,q) is considered geometrically consistent with
transformation TAB if its projection error ‖TAB(p)− q‖ is not larger
than the threshold ϕ.
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Foreground-guided matching loss Lmatching

For the correspondence with the endpoints (p,q), the correlation map
SAB(p,q) and the correspondence mask mA(p,q) capture its
appearance and geometric consensus, respectively.

When focusing on point p ∈ PA, we compute the matching score of
location p by

sA(p) =
∑
q∈PB

mA(p,q) · SAB(p,q). (2)

To suppress the effect of background clutters, we leverage the object
masks MA and MB estimated by the decoder D to focus on matching
the foreground regions.

The foreground-guided matching loss Lmatching is defined as

Lmatching = −
( ∑

p∈PA

sA(p) ·MA(p) +
∑
q∈PB

sB(q) ·MB(q)

)
. (3)

The negative sign indicates that maximizing the matching score is
equivalent to minimizing the foreground-guided matching loss.
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Forward-backward consistency loss Lcycle−consis

Regularize the network training by enforcing the predicted geometric
transformations to be consistent between an image pair.

Enforce the property TBA(TAB(p)) ≈ p for any coordinate p ∈ PA.
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Transitivity consistency loss Ltrans−consis

The idea of forward-backward consistency between an image pair can
be extended to the transitivity consistency across multiple images,
e.g., three images.

Given three images IA, IB , and IC , we first estimate three geometric
transformations TAB , TBC , and TCA.

We then enforce the property TCA(TBC (TAB(p))) ≈ p for any
coordinate p ∈ PA.

Ltrans−consis =
1

‖PA‖
∑
p∈PA

‖TCA(TBC (TAB(p)))− p‖. (5)
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Details of the consistency losses

For the transitivity consistency loss Ltrans−consis, the input triplets are
randomly selected within a mini-batch.

We sample 10× 10 = 100 spatial coordinates for computing the
forward-backward consistency loss Lcycle−consis and the transitivity
consistency loss Ltrans−consis.
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Training the object co-segmentation network

There is one loss to train the object co-segmentation network:
I perceptual contrastive loss Lcontrast.
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Perceptual contrastive loss Lcontrast

Given the feature maps fA and fB and the correlation maps SAB and
SBA, we first generate the concatenated features CA = [fA, SAB ] and
CB = [fB ,SBA].

The decoder D then takes the concatenated feature maps CA and CB

as inputs and produces object masks MA and MB for input images IA
and IB , respectively.
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Perceptual contrastive loss Lcontrast

To facilitate the decoder D segmenting the co-occurrent objects, we
exploit two properties:

I high foreground object similarity across images.
I high foreground-background discrepancy within each image.

We first generate the object image I oi and the background image I bi
for each image Ii by

I oi = Mi ⊗ Ii and I bi = (1−Mi )⊗ Ii for i ∈ {A,B}, (6)

where ⊗ denotes the pixel-wise multiplication between the two
operands.

We apply an ImageNet-pretrained ResNet-50 network F to I oi and I bi
to extract their semantic feature vectors F(I oi ) and F(I bi ),
respectively.
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Perceptual contrastive loss Lcontrast

The perceptual contrastive loss Lcontrast is defined as

Lcontrast = d+
AB + d−

AB , (7)

where the two criteria are respectively imposed on d+
AB and d−AB :

d+
AB =

1

c
‖F(I oA)−F(I oB)‖2 and (8)

d−
AB = max

(
0,m − 1

2c

(
‖F(I oA)−F(I bA)‖2 + ‖F(I oB)−F(I bB)‖2

))
. (9)

The constant c is the dimension of the semantic features produced by
F , and the margin m is the cutoff threshold.
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Cross-network training

Using the perceptual contrastive loss Lcontrast alone for object
co-segmentation may generate object masks that highlight only the
discriminative parts rather than the entire objects.

We leverage the dense correspondence fields estimated from semantic
matching to provide supervision for object co-segmentation.
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Cross-network consistency loss Ltask−consis
Propose a cross-network consistency loss Ltask−consis that bridges the
outputs of the semantic matching co-segmentation networks.

Predicted object masks MA and MB should be geometrically
consistent with the learned geometric transformations TAB and TBA:
apply TAB to MA and obtain M̃A to match MB

The cross-network consistency loss Ltask−consis is defined as

Ltask−consis = Lbce(M̃A,MB) + Lbce(M̃B ,MA), (10)

where Lbce(M̃A,MB) computes the binary cross-entropy loss between
M̃A and MB , and is defined as

Lbce(M̃A,MB) = − 1

HB ×WB

(∑
i ,j

M̃A(i , j) log

(
MB(i , j)

)

+
∑
i ,j

(
1− M̃A(i , j)

)
log

(
1−MB(i , j)

))
.

(11)
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Full training loss L

The full training loss L is composed of five loss functions defined by

L = Lmatching + λcycle · Lcycle−consis + λtrans · Ltrans−consis
+ λcontrast · Lcontrast + λtask · Ltask−consis,

(12)

where λcycle, λtrans, λcontrast, and λtask are the hyper-parameters
used to control the relative importance of the respective loss terms.
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Evaluation metrics and datasets

Evaluation metrics:
I semantic matching:

F the percentage of correct keypoints (PCK).

I object co-segmentation:
F the precision P.
F the Jaccard index J .

Datasets:
I joint semantic matching and object co-segmentation:

F TSS.

I semantic matching:
F PF-PASCAL.
F PF-WILLOW.
F SPair-71k.

I object co-segmentation:
F Internet.
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Evaluation of joint matching and co-segmentation

Table: Experimental results of semantic matching on the TSS dataset.

Method Descriptor Supervision FG3DCar JODS PASCAL Avg.

SIFT Flow SIFT - 0.632 0.509 0.360 0.500

DSP SIFT - 0.487 0.465 0.382 0.445

TSS HOG - 0.829 0.595 0.483 0.636

DAISY DAISY - 0.636 0.373 0.338 0.449

UCN GoogLeNet Strong 0.853 0.672 0.511 0.679

FCSS FCSS Strong 0.830 0.656 0.494 0.660

Proposal Flow FCSS Strong 0.839 0.635 0.582 0.685

DCTM FCSS Strong 0.891 0.721 0.610 0.740

SCNet-AG+ VGG-16 Strong 0.776 0.608 0.474 0.619

CNNGeo ResNet-101 Strong 0.886 0.758 0.560 0.735

CNNGeo w/ Inlier ResNet-101 Weak 0.892 0.758 0.562 0.737

Ours w/o co-seg ResNet-101 Weak 0.907 0.781 0.565 0.751

Ours ResNet-101 Weak 0.908 0.783 0.615 0.769
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Evaluation of joint matching and co-segmentation

Table: Experimental results of object co-segmentation on the TSS dataset.

Method Descriptor
FG3DCar JODS PASCAL Avg.

P J P J P J P J

SIFT Flow SIFT 0.661 0.42 0.557 0.24 0.628 0.41 0.615 0.36

DSP SIFT 0.502 0.29 0.454 0.22 0.496 0.34 0.484 0.28

Hati et al. SIFT 0.785 0.47 0.778 0.31 0.701 0.31 0.755 0.36

Chang et al. SIFT 0.872 0.67 0.851 0.52 0.723 0.40 0.815 0.53

Jerripothula et al. SIFT 0.913 0.78 0.900 0.65 0.880 0.73 0.898 0.72

Faktor et al. HOG 0.873 0.69 0.859 0.54 0.771 0.50 0.834 0.58

Joulin et al. SIFT 0.651 0.46 0.626 0.32 0.587 0.40 0.621 0.39

MRW SIFT 0.784 0.63 0.730 0.46 0.804 0.66 0.773 0.58

DFF DAISY 0.704 0.33 0.696 0.21 0.601 0.21 0.667 0.25

TSS HOG 0.877 0.76 0.761 0.50 0.778 0.65 0.805 0.63

Ours w/o matching ResNet-101 0.958 0.88 0.911 0.71 0.829 0.61 0.899 0.73

Ours ResNet-101 0.963 0.90 0.940 0.77 0.939 0.86 0.947 0.84
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Visual results of joint learning vs. separate learning
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Evaluation of co-segmentation on Internet

Table: Experimental results of object co-segmentation on the Internet dataset.

Method Descriptor
Airplane Car Horse Avg.

P J P J P J P J

DOCS VGG-16 0.946 0.64 0.940 0.83 0.914 0.65 0.933 0.70

Sun et al. HOG 0.886 0.36 0.870 0.73 0.876 0.55 0.877 0.55

Joulin et al. SIFT 0.475 0.12 0.592 0.35 0.642 0.30 0.570 0.24

Kim et al. SIFT 0.802 0.08 0.689 0.0004 0.751 0.06 0.754 0.05

Rubinstein et al. SIFT 0.880 0.56 0.854 0.64 0.828 0.52 0.827 0.43

Chen et al. HOG 0.902 0.40 0.876 0.65 0.893 0.58 0.890 0.54

Quan et al. SIFT 0.910 0.56 0.885 0.67 0.893 0.58 0.896 0.60

Hati et al. SIFT 0.777 0.33 0.621 0.43 0.738 0.20 0.712 0.32

Chang et al. SIFT 0.726 0.27 0.759 0.36 0.797 0.36 0.761 0.33

MRW SIFT 0.528 0.36 0.647 0.42 0.701 0.39 0.625 0.39

Jerripothula et al. SIFT 0.818 0.48 0.847 0.69 0.813 0.50 0.826 0.56

Hsu et al. VGG-16 0.936 0.66 0.914 0.79 0.876 0.59 0.909 0.68

Ours ResNet-101 0.941 0.65 0.940 0.82 0.922 0.63 0.935 0.70
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Visual comparisons of object co-segmentation

Figure: Visual comparisons on the TSS dataset.

Figure: Visual comparisons on the Internet dataset.

38 / 48



Evaluation of semantic matching on PF-PASCAL

Table: Experimental results of semantic matching on the PF-PASCAL dataset.

Method Descriptor aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv mean

Proposal Flow+LOM HOG 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

UCN GoogLeNet 64.8 58.7 42.8 59.6 47.0 42.2 61.0 45.6 49.9 52.0 48.5 49.5 53.2 72.7 53.0 41.4 83.3 49.0 73.0 66.0 55.6

A2Net ResNet-101 - - - - - - - - - - - - - - - - - - - - 59.0

GSF ResNet-50 - - - - - - - - - - - - - - - - - - - - 66.5

SCNet-AG+ VGG-16 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

CNNGeo ResNet-101 83.0 82.2 81.1 50.0 57.8 79.9 92.8 77.5 44.7 85.4 28.1 69.8 65.4 77.1 64.0 65.2 100.0 50.8 44.3 54.4 69.5

CNNGeo w/ Inlier ResNet-101 84.7 88.9 80.9 55.6 76.6 89.5 93.9 79.6 52.0 85.4 28.1 71.8 67.0 75.1 66.3 70.5 100.0 62.1 62.3 61.1 74.8

NC-Net ResNet-101 86.8 86.7 86.7 55.6 82.8 88.6 93.8 87.1 54.3 87.5 43.2 82.0 64.1 79.2 71.1 71.0 60.0 54.2 75.0 82.8 78.9

WeakMatchNet ResNet-101 85.6 89.6 82.1 83.3 85.9 92.5 93.9 80.2 52.2 85.4 55.2 75.2 64.0 77.9 67.2 73.8 100.0 65.3 69.3 61.1 78.0

Ours ResNet-101 83.4 87.4 85.3 72.2 76.6 94.6 94.7 86.6 54.9 89.6 52.6 80.2 70.6 79.2 73.3 70.5 100.0 63.0 66.3 64.4 79.0
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Evaluation of semantic matching on PF-WILLOW

Table: Experimental results of semantic matching on the PF-WILLOW dataset.

Method Descriptor α = 0.05 α = 0.1 α = 0.15

SIFT Flow VGG-16 0.324 0.456 0.555

CNNGeo ResNet-101 0.448 0.777 0.899

CNNGeo w/ Inlier ResNet-101 0.477 0.812 0.917

Proposal Flow + LOM HOG 0.284 0.568 0.682

UCN GoogLeNet 0.291 0.417 0.513

SCNet-AG+ VGG-16 0.386 0.704 0.853

A2Net ResNet-101 - 0.680 -

WeakMatchNet ResNet-101 0.484 0.816 0.918

RTNs ResNet-101 0.413 0.719 0.862

NC-Net ResNet-101 0.514 0.818 0.927

Ours ResNet-101 0.538 0.854 0.939
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Evaluation of semantic matching on SPair-71k

Table: Experimental results of semantic matching on the SPair-71k dataset.

Method Fine-tune Avg.

CNNGeo 18.1

A2Net 20.1

CNNGeo w/ Inlier 21.1

NC-Net 26.4

Ours 25.8

CNNGeo X 20.6

A2Net X 22.3

CNNGeo w/ Inlier X 20.9

NC-Net X 20.1

Ours X 26.6
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Visual comparisons of semantic matching

Figure: Visual comparisons on the PF-PASCAL (top row) and PF-WILLOW
(bottom row) datasets.
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Sensitivity analysis on hyperparameters for training loss

We analyze the sensitivity of our model by varying the value of each
hyperparameter in the full training loss.

L = Lmatching + λcycle · Lcycle−consis + λtrans · Ltrans−consis
+ λcontrast · Lcontrast + λtask · Ltask−consis,

(13)
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For semantic matching, the three most important hyperparameters
are λmatching, λcycle, and λtrans.

For object co-segmentation, the two most important hyperparameters
are λcontrast and λtask.
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Sensitivity analysis on the cutoff threshold m
We analyze the sensitivity of our model against the cutoff threshold
m in the perceptual contrastive loss Lcontrast.

Lcontrast = d+
AB + d−

AB , (14)

d+
AB =

1

c
‖F(I oA)−F(I oB)‖2 and (15)

d−
AB = max

(
0,m − 1

2c

(
‖F(I oA)−F(I bA)‖2 + ‖F(I oB)−F(I bB)‖2

))
. (16)
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Limitations

Our method may not work for images that contain multiple object
instances.

For semantic matching, our method predicts only one transformation
matrix for an image pair. When multiple object instances are present,
our method may not work well since multiple geometric
transformations are required.

For object co-segmentation, our method may fail if there exist
background patches that are visually similar to the foreground objects.
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Future work

Joint semantic matching and object co-segmentation from images
containing multiple object instances can potentially be addressed by
instance-level semantic matching methods and instance
co-segmentation approaches.

NC-Net [13] DeepCO3 [14]

[13] Rocco et al. Neighbourhood Consensus Networks. NeurIPS’18.

[14] Hsu et al. DeepCO3: Deep Instance Co-segmentation by Co-peak Search and
Co-saliency Detection. CVPR’19.
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Conclusions

We propose a weakly-supervised and end-to-end trainable network for
joint semantic matching and object co-segmentation.

To couple the training of both tasks, we introduce a cross-network
consistency loss to encourage the two-stream network to produce a
consistent explanation of the given image pair.

The network training requires only weak image-level supervision,
making our method scalable to real-world applications.

Experimental results demonstrate that our approach performs
favorably against the state-of-the-art methods on both semantic
matching and object co-segmentation tasks.
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