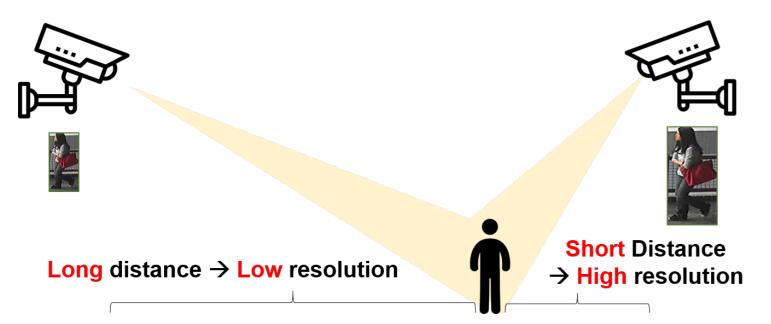


Yu-Jhe Li^{1,3*}


¹National Taiwan University

Cross-Resolution Person Re-ID

Goal: Identify images of the same person across cameras with different resolutions

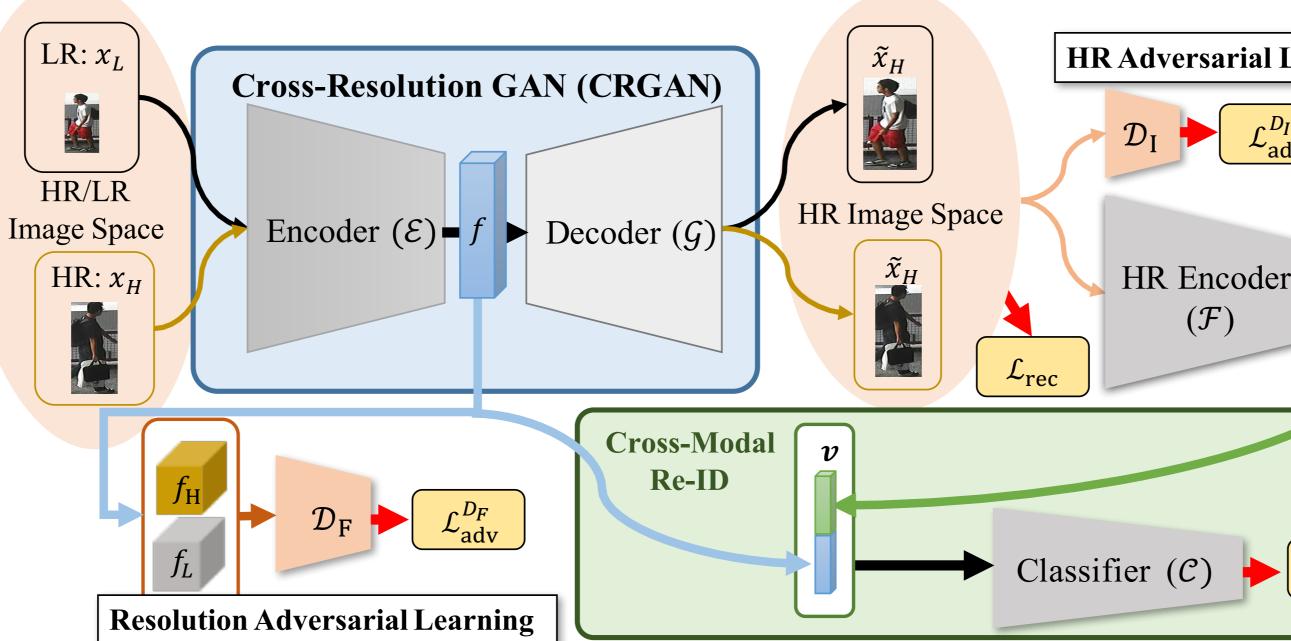
Challenges:

- Viewpoint & resolution variations

- Need to deal with images with **unseen resolutions**

Recover and Identify: A Generative Dual Model for Cross-Resolution Person Re-Identification

Yu-Chiang Frank Wang^{1,3,4} Yun-Chun Chen^{1,2,3*} Yen-Yu Lin² Xiaofei Du⁵ ³NTU AI Center ⁴ASUS Intelligent Cloud Services ⁵Umbo Computer Vision ²Academia Sinica


Cross-Resolution Adversarial Dual Network HR Image Recovery Down-sampling rate $r \in \{2, 3, 4\}$ (seen) Down-sampling rate *i* Method HR Adversarial Learning SSIM ↑ \tilde{x}_{H} **Cross-Resolution GAN (CRGAN)** CycleGAN [Zhu ICCV'17] 0.37 0.31 0.55 14.162.1 0.4212.70.34 0.25 14.5 17.2 67.7 0.52 0.67 SING [Jiao AAAI'18] 18.1 0.18 0.65 $\mathcal{D}_{\mathrm{I}} \blacktriangleright \mathcal{L}_{\mathrm{adv}}^{D_{\mathrm{I}}}$ 21.5 71.3 0.76 0.13 CSR-GAN [Wang IJCAI'18] 19.8 0.11 0.73 20.2 HR Image Space Encoder $(\mathcal{E}) = f$ > Decoder (\mathcal{G}) HR Encoder (\mathcal{F}) **Cross-Modal** Cycle **Re-ID** STAC Classifier (C) 🔶 **Results of Cross-Resolution Person Re-ID** ATMC-reID Rank 5 **Resolution-Invariant Representation** -80.1 81.4 78.1 82.0

84.4

<u>85.1</u>

86.7

12

	MLR-CUHK03		MLR-VIPeR		CAVIAR		MLR-Market-1501		MLR-DukeM7	
	Rank 1	Rank 5	Rank 1	Rank 5	Rank 1	Rank 5	Rank 1	Rank 5	Rank 1	ł
i ICCV'15]	26.2	58.0	26.0	55.1	22.0	60.1	-	-	-	
ng CVPR'15]	-	-	20.3	44.0	18.4	44.8	-	-	-	
g IJCAI'16]	22.2	48.0	9.3	38.1	14.3	37.5	-	-	-	
AAAI'18]	67.7	90.7	33.5	57.0	33.5	72.7	74.4	87.8	65.2	
[Wang IJCAI'18]	71.3	92.1	37.2	62.3	34.7	72.5	76.4	88.5	67.6	
Zhong CVPR'18]	69.1	89.6	34.4	56.8	32.1	72.3	74.5	88.6	64.0	
Ge NeurIPS'18]	73.4	93.8	39.1	62.1	33.5	71.4	79.6	<u>91.6</u>	67.5	
ly)	77.6	<u>96.2</u>	41.2	66.3	<u>41.5</u>	<u>75.3</u>	80.1	90.6	73.4	
ly)	<u>79.7</u>	97.4	<u>41.7</u>	<u>66.4</u>	38.9	73.1	<u>82.2</u>	91.3	<u>74.1</u>	
	82.1	97.4	43.1	68.2	42.8	76.2	83.7	92.7	75.6	

(a) Ours w/o $\mathcal{L}_{adv}^{\mathcal{D}_F}$: colorized w.r.t identity. (b) Ours: colorized w.r.t identity (c) Ours: colorized w.r.t resolution.

