NAS-DIP: Learning Deep Image Prior with Neural Architecture Search

Yun-Chun Chen

Chen Gao

Esther Robb

Jia-Bin Huang

Learning-based Methods

Deep Image Prior (DIP) [Ulyanov et al. CVPR 2018]

NAS-DIP (Ours)

Neural Architecture Search (NAS)

Overview of NAS-DIP

Model Training

NAS Training

Testing

Search Space

• Upsampling cell

- Cross-scale residual connections
 - Shared cross-level patterns
 - Progressive upsampling

1 x 1

1

None

Bilinear

2D convolution

Search Space for the Upsampling Cell

Cross-scale Residual Connections

Decomposition

Direct upsampling

Progressive upsampling (Ours)

Weight Sharing

Progressive upsampling (Ours)

Quantitative Results

Mathad	$\mathbf{Set5}$			$\operatorname{Set} 14$		
Metnod	$2 \times$	$4 \times$	$8 \times$	2 imes	$4 \times$	$8 \times$
Bicubic	33.66	28.44	24.37	30.24	26.05	23.09
Glasner et al.	-	28.84	-	-	26.46	-
TV prior	-	28.85	24.87	-	26.42	23.48
RED	-	30.23	25.56	-	27.36	23.89
$\operatorname{DeepRED}$	-	30.72	26.04	-	27.63	24.28
$\mathbf{SelfExSR}$	36.60	30.34	25.49	32.2 4	27.41	23.92
DIP	33.19	29.89	25.88	29.80	27.00	24.15
Ours	35.32	30.81	26.4 1	31.58	27.84	24.59

Method	Inpainting	Denoising
Papyan et al.	31.19	-
DIP	33.48	30.43
SGLD	34.51	30.81
Ours	34.72	31.42

Visual Comparisons

Bicubic

DIP

Ours

Model Transferability

Hazy image

Ground truth

DoubleDIP (U-Net)

DoubleDIP (Ours)

Winter \rightarrow Summer

Input

CycleGAN (U-Net)

CycleGAN (Ours)

Input

CycleGAN (U-Net)

 ${f CycleGAN} \ (Ours)$

Summary

- Search for neural architectures for inverse image problems.
- Search spaces for the upsampling layer and cross-level residual connections.
- State-of-the-art results on image restoration tasks.
- Model transferability.

Super-Resolution Denoising

Inpainting

Dehazing

Translation