Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors

Yun-Chun Chen¹,²
Haoda Li¹,²
Dylan Turpin¹,²
Alec Jacobson¹,⁴
Animesh Garg¹,²,³

¹University of Toronto
²Vector Institute
³NVIDIA
⁴Adobe Research, Toronto
neural-shape-mating.github.io

Geometric Shape Mating
- Input: Two shapes
- Goal: Develop an algorithm that learns to assemble the two shapes

Registration vs. Assembly
- Self-supervised data collection
- Objects from 11 categories
- 5 different types of cuts
- Each object, generate shell and solid test cases
- Random initial poses for object parts

Semantic vs. Geometric

Challenges in Geometric Shape Mating
- Shape fragments do not have well-defined semantic meanings
- No target shapes available
- Shape assembly relies purely on geometric reasoning
- No large-scale datasets available

Problem Formulation: Part Pose Prediction

Registration
- Align two scans of the same object
- Align the interfaces of the two shapes to form an object

Experimental Results
Evaluation metric: root mean squared error (RMSE)
- R: rotation, T: translation

Results of Unseen Categories

Method
Solid Shape Mating
Shell Shape Mating

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE ($\times 10^{-3}$)</th>
<th>RMSE ($\times 10^{-3}$)</th>
<th>RMSE ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP (point-to-point)</td>
<td>95.14</td>
<td>90.41</td>
<td>92.01</td>
</tr>
<tr>
<td>ICP (point-to-plane)</td>
<td>82.15</td>
<td>81.83</td>
<td>68.19</td>
</tr>
<tr>
<td>Sparse ICP (point-to-point)</td>
<td>69.93</td>
<td>64.09</td>
<td>62.98</td>
</tr>
<tr>
<td>Sparse ICP (point-to-plane)</td>
<td>57.16</td>
<td>59.33</td>
<td>57.62</td>
</tr>
<tr>
<td>GNN Assembly [4]</td>
<td>32.98</td>
<td>40.77</td>
<td>33.18</td>
</tr>
</tbody>
</table>

Results of Unseen Cut Types

Method
Solid Shape Mating
Shell Shape Mating

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE ($\times 10^{-3}$)</th>
<th>RMSE ($\times 10^{-3}$)</th>
<th>RMSE ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCP [13]</td>
<td>81.04</td>
<td>92.01</td>
<td>80.79</td>
</tr>
<tr>
<td>GNN Assembly [4]</td>
<td>49.13</td>
<td>23.16</td>
<td>46.30</td>
</tr>
</tbody>
</table>

References