Yun-Chun Chen^{1,2}

Animesh Garg^{1,2,3} Alec Jacobson^{1,4} ³ NVIDIA ⁴ Adobe Research, Toronto Experimental Results Geometric Shape Mating Dataset - Self-supervised data collection Evaluation metric: root mean squared error (RMSE) - R: rotation, T: translation - Objects from 11 categories - 5 different types of cuts Method - Each object, generate shell and solid test cases - Random initial poses for object parts ICP (point-to-point) ICP (point-to-plane) Sparse ICP (point-to-Sparse ICP (point-to-DCP [3] GNN Assembly [4] Neural Shape Mating Results of Unseen Categories Method Different Solid Shell Random Poses Watertight Meshes Cut Types DCP [3] GNN Assembly [4] Neural Shape Mating Part Pose Prediction Adversarial Shape Prior Discriminator ²pose \square Regressor *r*pred D \mathcal{L}_{adv} \rightarrow DCP Ground truth ICP Sparse ICP Input References

neural-shape-mating.github.io

- The lower, the better

Results of Pairwise 3D Geometric Shape Mating

	RMSE (R)	RMSE (T)	RMSE (R)	RMSE (T)	
	degree	$\times 10^{-3}$	degree	$\times 10^{-3}$	
	Solid Shape Mating		Shell Shape Mating		
[1]	95.44	460.18	93.41	780.26	
[1]	82.15	286.61	81.83	681.09	
-point) [2]	68.93	184.09	71.41	629.08	
-plane) [2]	57.16	198.23	59.31	572.63	
	58.31	235.08	62.14	580.11	
	32.98	138.67	40.77	337.18	
F	9.73	124.40	17.03	328.03	

Results of Unseen Cut Types

$\mathbf{RMSE}\left(R ight)$	RMSE (T)	Method	RMSE (R)	RMSE (T)
degree	$\times 10^{-3}$		degree	$\times 10^{-3}$
Solid Shape Mating		Solid Shape Mating		
81.04	329.65	DCP [3]	76.85	298.16
49.13	235.16	GNN Assembly [4]	46.30	241.51
16.32	234.98	Neural Shape Mating	15.86	230.96

Visual Comparisons of Pairwise 3D Geometric Shape Mating

[1] Besl et al. Method for Registration of 3D Shapes. TPAMI, 1992.

[2] Bouaziz et al. Sparse Iterative Closest Point. Computer Graphics Forum, 2013.

[3] Wang et al. Deep Closest Point: Learning Representations for Point Cloud Registration. In ICCV, 2019. [4] Li et al. Learning 3D Part Assembly from a Single Image. In ECCV, 2020.