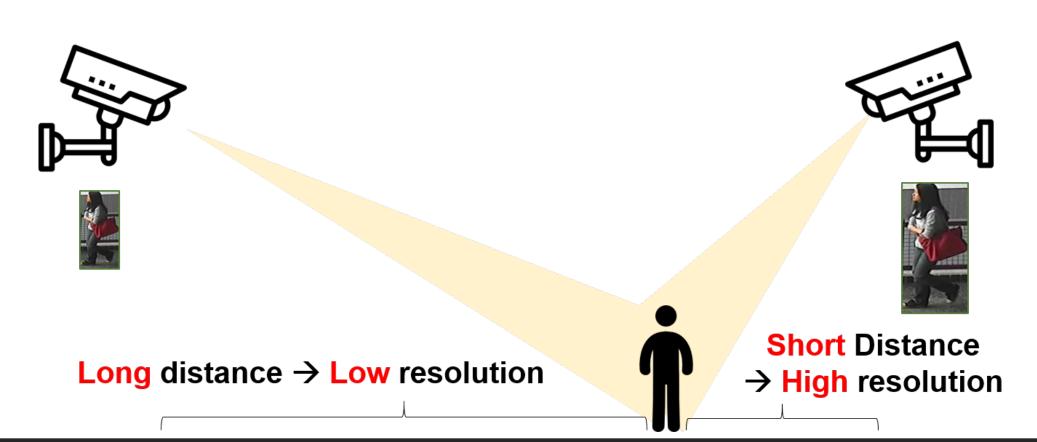
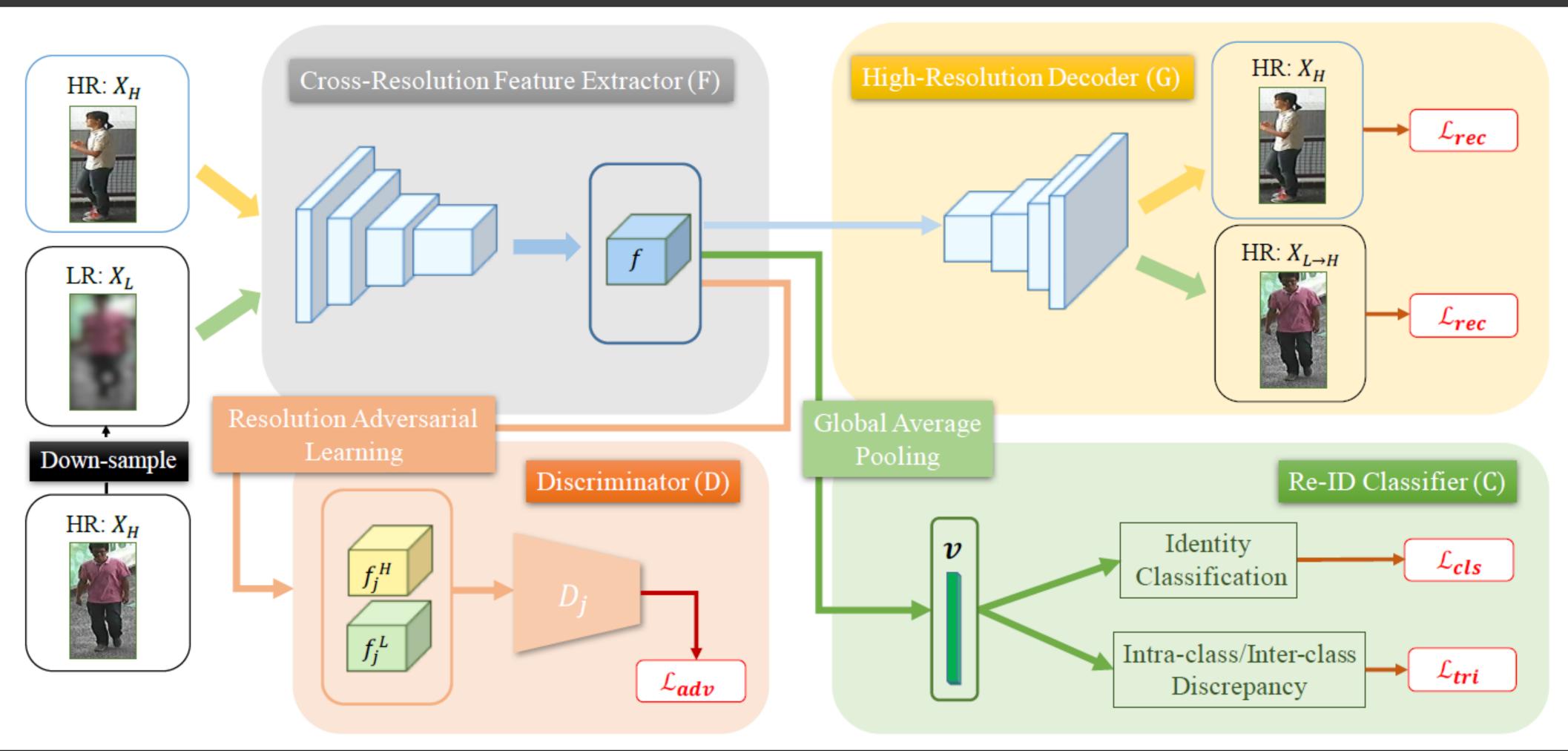
Learning Resolution-Invariant Deep Representations for Person Re-Identification

Yun-Chun Chen^{1*}


Yu-Jhe Li^{1,2*} Xiaofei Du³ Yu-Chiang Frank Wang^{1,2}

²MOST Joint Research Center for AI Technology and All Vista Healthcare ¹National Taiwan University ³Umbo Computer Vision

Cross-Resolution Person Re-ID

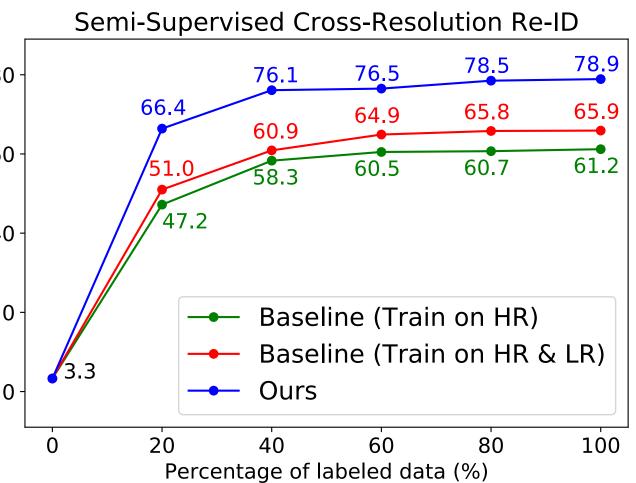

- Goal: Identify images of same person across camera views
- Challenges:
 - Viewpoint variations
 - Resolution issues due to person-camera distance

Contributions

- Propose an end-to-end trainable network that learns resolution-invariant representations
- Develop a multi-level adversarial network that effectively aligns feature representations across resolutions.
- Can handle images of a wide range of (and even unseen) low resolutions.
- Perform favorably against the state-of-the-art methods.
- Extensible to practical cross-resolution re-ID tasks under semi-supervised settings.

Resolution Adaptation and re-Identification Network (RAIN)

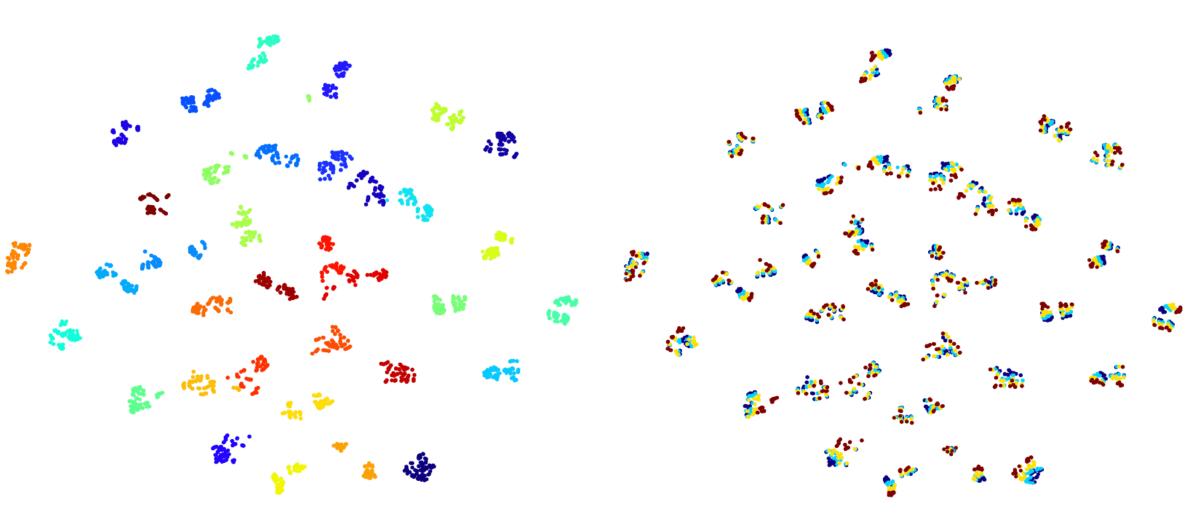
Experimental Results


Results on three standard benchmarks

Mathad	M	MLR-CUHK03		MLR-VIPeR			CAVIAR		
Method	Rank 1	Rank 5	Rank 10	Rank 1	Rank 5	Rank 10	Rank 1	1 Rank 5 60.1 44.8 37.5 72.7 72.5 63.2 68.4 75.3	Rank 10
JUDEA [1]	26.2	58.0	73.4	26.0	55.1	69.2	22.0	60.1	80.8
SLD^2L [2]	-	-	-	20.3	44.0	62.0	18.4	44.8	61.2
SDF [3]	22.2	48.0	64.0	9.25	38.1	52.4	14.3	37.5	62.5
SING [4]	67.7	90.7	94.7	33.5	57.0	66.5	33.5	72.7	89.0
CSR-GAN [5]	71.3	92.1	97.4	37.2	62.3	71.6	34.7	72.5	87.4
Baseline (HR)	60.6	89.4	95.0	32.5	59.2	69.0	27.5	63.2	79.3
Baseline (HR & LR)	65.9	92.1	97.4	36.6	62.3	70.9	31.7	68.4	84.2
Ours (single-level)	77.6	96.2	98.5	41.2	66.3	75.6	41.5	75.3	85.6
Ours (multi-level)	78.9	97.3	98.7	42.5	68.3	79.6	42.0	77.3	89.6

Ablation study

Method	MLR-CUHK03					
Wicthod	Rank 1	Rank 10	mAP	\sim co		
Ours	78.9	98.7	74.5	score (%) 40		
Ours w/o \mathcal{L}_{cls}	70.8	97.7	68.0	\vdash		
Ours w/o \mathcal{L}_{tri}	69.1	96.6	64.1	Rank 05		
Ours w/o \mathcal{L}_{rec}	67.3	94.5	64.2			
Ours w/o \mathcal{L}_{adv}	65.9	97.4	62.3	0		


Semi-supervised results

Top ranked gallery images

Resolution-invariant feature vector \boldsymbol{v}

(a) Colorization with respect to **identity**.

(b) Colorization with respect to **resolution**.

Reference

- [1] Li et al. Multi-Scale Learning for Low-Resolution Person Re-Identification. In ICCV, 2015.
- [2] Jing et al. Super-Resolution Person Re-Identification with Semi-Coupled Low-Rank Discriminant Dictionary Learning. In CVPR, 2015.
- [3] Wang et al. Scale-Adaptive Low-Resolution Person Re-Identification via Learning a Discriminating Surface. In IJCAI, 2016.
- [4] Jiao et al. Deep Low-Resolution Person Re-Identification. In AAAI, 2018. [5] Wang et al. Cascaded SRGAN for Scale-Adaptive Low Resolution Person Re-Identification. In IJCAI, 2018.