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Cross-Resolution Person Re-ID Contributions

Goal: Identify images of same person across camera views Propose an end-to-end trainable network that learns

Challenges: resolution-invariant representations
- Viewpoint variations
- Resolution issues due to person-camera distance Develop a multi-level adversarial network that effectively

aligns feature representations across resolutions.

Can handle images of a wide range of (and even
unseen) low resolutions.

Perform favorably against the state-of-the-art methods.

Short Distance Extensible to practical cross-resolution re-ID tasks under
= High resolution semi-supervised settings.
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Experimental Results

» Results on three standard benchmarks » Ablation study « Semi-supervised results
Semi-Supervised Cross-Resolution Re-ID
Method MLR-CUHKO3 MLR-VIPeR CAVIAR MLR-CUHKO3 w0 61 76s 785 78.9
Rank I Rank5 Rank10 | Rank1 Rank5 Rank 10 | Rank1 RankS Rank10  Method Rank 1 Rank 10 mAP 0 58 659
an an m - 2.9 >,
JUDEA [1] 262 580 73.4 260  55.1 69.2 20  60.1 80.8 3 60- %,
SLD2L [2] i i i 203 440 620 | 184 448 612 Ours 78.9 W7 745 o
SDF [3] 22.2 48.0 64.0 9.25 38.1 52.4 14.3 37.5 62.5 Ours w/o L. 70.8 97.7 68.0 f 40
V4
SING [4] 67.7 90.7 04.7 33.5 57.0 66.5 33.5 72.7 89.0 Ours W/0 Lyp; 691 06.6 64.1 < o | |
CSR-GAN [5] 713 92.1 97.4 372 623 71.6 347 725 87.4 = —e— Baseline (Train on HR)
OUI‘S W/O £T‘60 67.3 94.5 64.2 —e— Baseline (Train on HR & LR)
Baseline (HR) 60.6  89.4 95.0 325 592 69.0 275 632 79.3 Ours w/o L.y | 65.9 97 4 623 0. e Ours
Baseline (HR & LR) | 659  92.1 97.4 366 623 70.9 317 684 84.2 - - v - - .
) Percentage of labeled data (%)
Ours (single-level) 776 962 98.5 412 663 75.6 415 753 85.6 :
| » Jop ranked gallery images
Ours (multi-level) 78.9 97.3 98.7 42.5 68.3 79.6 42.0 77.3 89.6
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« Resolution-invariant feature vector v
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