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Abstract. Establishing dense semantic correspondences between object
instances remains a challenging problem due to background clutter, sig-
nificant scale and pose di↵erences, and large intra-class variations. In this
paper, we present an end-to-end trainable network for learning semantic
correspondences using only matching image pairs without manual key-
point correspondence annotations. To facilitate network training with
this weaker form of supervision, we 1) explicitly estimate the foreground
regions to suppress the e↵ect of background clutter and 2) develop cycle-
consistent losses to enforce the predicted transformations across multiple
images to be geometrically plausible and consistent. We train the pro-
posed model on the image pairs of the PF-PASCAL dataset and evaluate
the learned model on the PF-PASCAL, PF-WILLOW, and TSS datasets.
Extensive experimental results show that the proposed approach achieves
favorably performance compared to the state-of-the-art.

1 Introduction

Semantic matching is an important and active research topic in computer vision.
Previous methods such as optical flow estimation [5,10] and stereo matching [24,
30] rely on per-pixel correspondence to match across images depicting the same
scene or object instance. While correspondence estimation has been studied for
years, there has been a growing trend to extend the idea of matching the same
objects across images to matching images covering di↵erent instances of an object
category. This progress not only attracts a lot of attention but also facilitates
many real-world applications ranging from object recognition [16], object co-
segmentation [23, 27], to 3D reconstruction [19]. However, due to the presence
of background clutter, ambiguity induced by large intra-class variations, and
the limited scalability of obtaining large-scale datasets with manually annotated
correspondences, semantic matching remains quite challenging.

Conventional methods for semantic matching heavily rely on hand-crafted
descriptors such as SIFT [16], HOG [4], or DAISY [29] as well as an e↵ective ge-
ometric regularizer. However, these hand-crafted descriptors are pre-defined and
cannot adapt themselves to the given visual domains, leading to the sub-optimal
performance of semantic matching. Driven by the recent success of convolutional
neural networks (CNNs), several learning-based approaches, e.g., [3,7,13,21,22],
have been proposed for addressing the problem of semantic matching. While
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Fig. 1: (a) An image pair for semantic matching. (b)⇠(e) The matching results,
together with their matching errors shown above, generated by di↵erent ap-
proaches, including (b) the baseline model, (c) the baseline model with fore-
ground detection, (d) the baseline model with cycle-consistency checking, and
(e) the proposed approach.

promising results have been shown in many of the cases, these approaches still
su↵er from the following limitations. The methods in [3, 7, 13, 21] require a vast
amount of supervised data for training. Collecting a large-scale and diverse data,
however, is expensive and labor-intensive. While weakly supervised methods such
as [22] have been recently proposed to relax the issue, these approaches implic-
itly enforce the background features from both images to be similar. Thus, they
still su↵er from the unfavorable e↵ect of background clutter.

In this work, we address the above-mentioned limitations by presenting an
end-to-end trainable network for weakly supervised semantic matching, where
training images covering objects of the same category are given without further
manual annotations (e.g., keypoint correspondences). To alleviate the negative
e↵ect of background clutter, we integrate a foreground detection module into
our semantic matching network. In this way, the e↵ect of background clutter
can be mitigated by excluding background matching. The proposed network
then focuses on learning the features and geometric models for better matching
the detected foreground, resulting in sizable improved performance. To address
the matching di�culties caused by complex image appearance and large intra-
class variations, we propose to narrow down the matching space by filtering out
correspondences with geometric inconsistency. To this end, we exploit the prop-
erty that correct correspondences should be cycle-consistent meaning that when
matching a particular point from one image to the other and then performing a
reverse mapping, we should arrive at the same spot. We further extend this idea
to exploit transitivity consistency across multiple images.

Fig. 1 shows an image pair and the matching results generated by using
the baseline model, the baseline model with foreground detection, the baseline
model with cycle-consistency checking, and the proposed method (i.e., the base-
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line model with both foreground detection and cycle-consistency checking). The
numbers on the top of Fig. 1(b)-(e) are the errors measured by the average dis-
tance between the predicted keypoints and their corresponding ground truths.
It can be observed in Fig. 1(c) that the unfavorable e↵ect of background clut-
ter is alleviated since most correspondences in the background are removed.
Fig. 1(d) shows that exploiting cycle-consistency constraints helps exclude am-
biguous matching, resulting in significant reduction of matching errors. Our
method simultaneously integrates foreground detection and cycle-consistency
checking into semantic matching. As shown in Fig. 1(e), the quality of match-
ing, measured by the matching error, is further enhanced.

The main contributions of this work are summarized as follows. First, we
present an end-to-end trainable network that integrates foreground detection
into semantic matching. With a module for explicit foreground detection, the
proposed network suppresses the unfavorable e↵ect of background clutter. Sec-
ond, our model implicitly tackles the ambiguity induced by vast matching space
by inferring bi-directional geometric transformations during matching. With
these transformations, we explicitly enforce the inferred geometric transforma-
tions to be cycle-consistent by introducing the forward-backward consistency loss.
In addition, we exploit the property of transitivity consistency and introduce the
transitivity loss to further enhance the matching performance. We train our net-
work with the image pairs of the PF-PASCAL dataset [6]. We then evaluate the
proposed model on several standard benchmark datasets for semantic matching,
including the PF-PASCAL [6], PF-WILLOW [6], and TSS [27] datasets. Exten-
sive comparisons with existing semantic matching algorithms demonstrate that
the proposed approach achieves the state-of-the-art performance.

2 Related Work

Semantic matching has been extensively studied in the literature. Here, we review
several topics pertinent to our approach.

Semantic Correspondence. Conventional approaches to semantic matching [1,
4,16,29] leverage hand-crafted descriptors such as SIFT or HOG along with geo-
metric matching models. They seek the keypoint correspondences across images
by optimizing a given energy function. The SIFT Flow [16] method shares a sim-
ilar idea with optical flow, which aligns two images in a large corpus, to establish
correspondences. It further employs the SIFT descriptor to extract semantic in-
formation from input images and introduces a coarse-to-fine search algorithm for
e�cient matching. Yang et al . [29] adopt DAISY as the descriptor to e�ciently
perform correspondence field estimation. Kim et al . [12] learn dense correspon-
dence by proposing the deformable spatial pyramid. Ham et al . [6] introduce the
Proposal Flow where the HOG features and object proposals are used as the
matching primitives to learn semantic correspondence. With the use of object
proposal, the Proposal Flow method is robust to scaling and background clutter.
Taniai et al . [27] propose a model based on hierarchical Markov random field,
where object co-segmentation and dense correspondences are jointly recovered.
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However, the aforementioned methods are established based on hand-crafted
descriptors, which may limit their generalization capability.

Semantic Correspondence via Deep Learning. Convolutional neural net-
works have been applied to semantic matching for the superior performance of
feature extraction. Choy et al . [3] propose the universal correspondence net-
work (UCN) along with a correspondence contrastive loss. Their method adopts
a convolutional spatial transformer for feature transformations, which makes
their method robust to scaling and rotations. In [13], Kim et al . propose a
CNN-based descriptor called fully convolutional self-similarity (FCSS) and com-
bine the descriptor with the Proposal Flow framework [6] for image matching.
The SCNet developed by Han et al . [7] learns a geometrically plausible model
for semantic correspondence by incorporating geometric consistency constraints
into the loss function. While the methods in [7,13] employ trainable descriptors
for semantic correspondence, feature matching is learned at the object-proposal
level. Consequently, these methods are not end-to-end trainable because a fu-
sion step is required to produce the final results. Rocco et al . [21] present a
CNN-based architecture for geometric matching which estimates a parametric
geometric model that can be converted to dense pixel correspondence in an end-
to-end trainable fashion. Although these methods [3, 6, 7, 13, 21] perform better
than those based on hand-crafted features, they need supervised data (in terms
of manually labeled keypoint correspondence) for training. The dependency of
manual supervision restricts the scalability.

Recently, a few CNN-based methods [11, 20, 22, 28] have carried out weakly
supervised semantic correspondence. Novotny et al . [20] propose the AnchorNet
which learns a set of filters whose response is geometrically consistent across dif-
ferent object instances. However, this model is combined with hand-crafted align-
ment models, and therefore is not end-to-end trainable. The WarpNet [11] learns
fine-grained image matching with small scale and pose variations via aligning ob-
jects across images through known deformation. James et al . [28] align a set of
images by projecting image pixels to a common coordinate system. Although
their method has been shown to be e↵ective under well-controlled environments,
it may not generalize well to real-world scenarios. Inspired by the inlier scoring
procedure of RANSAC, Rocco et al . [22] propose an end-to-end trainable align-
ment network, which computes dense semantic correspondence while aligning
two images. Our proposed method di↵ers from [20, 22] in two ways. First, our
method further takes into account foreground detection. Our network learns fea-
ture embedding to enhance inter-image foreground similarity while alleviating
the unfavorable e↵ects caused by complex background. Second, we introduce bi-
directional transformations and further leverage cycle consistency for enforcing
geometrically consistent predictions.

Foreground Detection. We review a few methods related to foreground de-
tection. For saliency detection, Xia et al . [31] develop a center surround infer-
ence network that detects salient regions of an image in an unsupervised way.
Zhang et al . [36] propose a deep learning framework that leverages intra-saliency
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prior transfer and deep inter-saliency mining to perform co-saliency detection
among groups of images. For semantic segmentation, Long et al . [17] develop a
fully convolutional network (FCN) which can be trained end-to-end and pixels-
to-pixels to segment objects of interest. The PSPNet [37] by Zhao et al . extends
the idea of feature pyramid for semantic segmentation in a coarse-to-fine fashion.
He et al . [8] introduce a framework that can not only detect objects but gener-
ate high-quality masks for foreground objects. The proposed method leverages
foreground detection to identify the regions for matching. Thus, it can work well
on images with complex background.

Cycle Consistency. Leveraging cycle consistency to regularize learning has
been studied. Sundaram et al . [26] exploit forward-backward consistency to
tackle visual tracking. The CycleGAN [41] method proposed by Zhu et al . shares
the same idea. It couples the network with an inverse mapping to deal with un-
paired image-to-image translation. Meister et al . [18] propose an unsupervised
learning framework, called UnFlow, which estimates bi-directional optical flow
to explicitly reason about occlusion and make use of the census transform to
increase robustness. While the idea of cycle consistency has been widely ap-
plied to various vision tasks, several methods [38–40] share the same idea in
the context of semantic matching. Zhou et al . [40] tackle the problem of match-
ing multiple images by jointly optimizing feature matching and enforcing cycle
consistency. The FlowWeb [38] learns image alignment by establishing globally-
consistent dense correspondences via exploiting cycle consistency constraints.
However, these methods [38,40] employ hand-engineered descriptors which can-
not adapt to an arbitrary object category given for matching. Zhou et al . [39]
establish dense correspondences by using an additional 3D CAD model to form a
cross-instance loop between synthetic data and real images. However, their cycle
consistency loss requires four images at a time. On the contrary, we develop two
loss functions to enforce cycle consistency and do not need additional data to
guide the training. Experimental results demonstrate that by exploiting cycle
consistency constraints, the proposed method improves the performance.

3 Proposed Algorithm

In this section, we first give an overview of our approach with the developed
objective function. Then, each loss adopted in the objective function is described.
Finally, the implementation details are provided.

3.1 Framework Overview

Let D = {Ii}Ni=1 denote a set of images covering instances of the same object
category, where Ii is the ith image and N is the number of images. Our goal is to
learn a CNN-based model that can determine the keypoint correspondences be-
tween each image pair (IA, IB) in D without knowing the object class in advance.
Our formulation for semantic matching is weakly-supervised since training our
model requires only weak image-level supervision in the form of training image
pairs containing common objects. No ground truth correspondences are used.
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Fig. 2: Semantic matching network. Our model is composed of two collabo-
rative CNN modules: a feature extractor F for extracting features and a trans-
formation predictor G for estimating the geometric transformations between a
given image pair. The model training is driven by three loss functions, including
the masked correspondence loss LM , the forward-backward consistency loss LF ,
and the transitivity loss LT .

To accomplish this task, we present an end-to-end trainable network which
is composed of two collaborative CNN modules: the feature extractor F and
the transformation predictor G. The former is a CNN model which learns and
extracts the features for a given pair of images. The latter is a CNN-based
regressor. For an image pair, it estimates the transformation that warps an image
so that the warped image can better align the other image. Fig. 2 presents the
two collaborative CNN modules in the proposed network architecture.

As shown in Fig. 2, the proposed network architecture takes an image pair
for semantic matching. For each image pair (IA, IB) in D, they are fed into the
feature extractor F to extract their feature maps fA and fB , respectively. We
then perform correlation from fA to fB to generate the correlation map SAB .
The other correlation map SBA is symmetrically obtained. Then the transfor-
mation predictor G estimates the geometric transformation TAB which warps IA
so that the warped image ĨA can align IB . In the following section, we develop
the objective function used to optimize the feature extractor F and the trans-
formation predictor G. After optimization, the matching between an image pair
(IA, IB) can be performed via the predicted transformation TAB or TBA.

3.2 Objective Function

The overall training objective consists of three loss functions. First, the masked
correspondence loss LM minimizes the distance between the corresponding fea-
tures based on the estimated geometric transformations. Unlike existing seman-
tic matching methods [21,22], our model predicts foreground masks to suppress
the e↵ect of background clutter by excluding background matching. Second,
the forward-backward consistency loss LF and the transitivity loss LT enforce
the predicted transformations across multiple images to be geometrically plausi-
ble and consistent. Both losses regularize the network training. Specifically, the
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training objective is defined by

L = LM + �F · LF + �T · LT , (1)

where �F and �T are hyper-parameters used to control the relative importance
of the respective loss functions. The details of each loss function are described
in the following.

3.3 Masked Correspondence Loss

To reduce the e↵ect of background clutter and enforce only foreground regions to
be similar, our model minimizes the masked correspondence loss. Given an im-
age pair (IA, IB), the feature extractor F extracts their respective feature maps
fA 2 RhA⇥wA⇥d and fB 2 RhB⇥wB⇥d, where d is the number of channels. We cor-
relate fA with fB to generate the correlation map SAB 2 RhA⇥wA⇥hB⇥wB . Each
element SAB(i, j, s, t) = SAB(p,q) records the normalized inner product between
the feature vectors stored at two spatial locations p = [i, j]> in fA and q = [s, t]>

in fB . The other correlation map SBA 2 RhB⇥wB⇥hA⇥wA can be yielded sym-
metrically. The correlation map SAB is reshaped to a third-dimensional tensor
with dimensions hA, wA, and (hB⇥wB), i.e., SAB 2 RhA⇥wA⇥(hB⇥wB). As such,
it can be interpreted as a dense hA ⇥wA grid with (hB ⇥wB)-dimensional local
features. The reshape operation is applied to SBA as well. With the reshaped
SAB , we use the transformation predictor G [21] to estimate a geometric trans-
formation TAB which warps IA to ĨA so that ĨA aligns well to IB .

Since the correlation map SAB(p,q) records the normalized inner product
between two feature vectors located at p in fA and q in fB . Our model estimates
the foreground mask MA 2 RhA⇥wA by

MA(p) = max
q

(SAB(p,q)). (2)

Note that both the correlation maps SAB and SBA are compiled through a
rectified linear unit (ReLU) to eliminate negative matching values in advance.
Therefore, the value of the estimated foreground masks at each pixel will be
bounded between 0 and 1. Intuitively, MA(p) has a low value (i.e., location p is
likely to belong to background) if none of the feature vectors in fB matches well
with fA(p). Likewise, MB can be obtained.

With the estimated geometric transformation TAB , we can identify and filter
out geometrically inconsistent correspondences. Consider a correspondence (p 2
PA,q 2 PB), where PA and PB are the sets of all spatial coordinates of fA
and fB , respectively. The distance kTAB(p)�qk represents the projection error
of this correspondence with respect to transformation TAB . Following [22], we
introduce a correspondence mask mA to determine if the correspondences are
geometrically consistent with transformation TAB . Specifically, mA is defined by

mA(p,q) =

(
1, if kTAB(p)� qk  ',

0, otherwise.
, for p 2 PA and q 2 PB , (3)
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where ' is the predefined threshold. Note that the correspondence mask mA is
introduced to remove the correspondences that are geometrically inconsistent
with the transformation TAB , namely those with the projection errors larger
than '. Empirically, we set ' to 1 in our experiments.

Given the geometric transformation TAB and correspondence mask mA, the
likelihood of each spatial location p 2 PA being matched is computed by

sA(p) =
X

q2PB

mA(p,q) · SAB(p,q). (4)

To suppress the e↵ect of background clutter, we incorporate the estimated
foreground masks to focus on matching foreground regions. The masked corre-
spondence loss is defined by

LM (IA, IB ;F ,G) = �
✓ X

p2PA

sA(p) ·MA(p) +
X

q2PB

sB(q) ·MB(q)

◆
. (5)

Note that the negative sign in (5) is used in the objective function, since
maximizing the matching score is equivalent to minimizing the loss LM .

3.4 Cycle Consistency

For a pair of images IA and IB , the transformation predictor G estimates a ge-
ometric transformation TAB , which transforms pixel coordinates from IA to IB .
However, the large capacity of G often leads to a circumstance where various
transformations can warp IA to ĨA which aligns IB very well. This implies that
using the masked correspondence loss alone is not su�cient to reliably train G in
the weakly supervised setting since there are no supervised correspondences to
constrain the transformations. We address this issue by simultaneously estimat-
ing TAB and TBA and enforce the predicted transformations to be geometrically
plausible and consistent across multiple images. It greatly reduces the feasible
space of transformations and can serve as a regularization term in training the
transformation predictor G. To this end, we develop two loss functions where
cycle consistency constraints are done in conjunction with the proposed method
such that the model is end-to-end trainable. The developed loss functions are
described below.

Forward-Backward Consistency Loss. Consider the correlation maps SAB

and SBA generated from images IA and IB . The forward consistency states that
property TBA(TAB(p)) ⇡ p holds for any p 2 PA. By the same token, the
backward consistency means TAB(TBA(q)) ⇡ q for any q 2 PB . The resultant
forward-backward consistency loss is then defined by

LF (IA, IB ;F ,G) =
X

p2PA

kTBA(TAB(p))� pk+
X

q2PB

kTAB(TBA(q))� qk, (6)

where kTBA(TAB(p)) � pk is the reprojection error between coordinate p and
the reprojected coordinate TBA(TAB(p)).
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Transitivity Loss. The idea of forward-backward consistency between a pair
of images can be further extended to the transitivity consistency across multiple
images. Considering the case of three images IA, IB , and IC , we estimate three
geometric transformations TAB , TBC , and TAC . Transitivity consistency in this
case states that the coordinate transformation from IA to IC should be path
invariant. Namely, for any coordinate p 2 PA, the property, TBC(TAB(p)) ⇡
TAC(p), holds. The transitivity loss is then expressed as

LT (IA, IB , IC ;F ,G) =
X

p2PA

kTBC(TAB(p))� TAC(p)k. (7)

3.5 Network Selection and Initialization

We try several CNN-based architectures to serve as the feature extractor F ,
and finally adopt the semantic matching network proposed in [22] due to its
impressive results for image alignment. The network employs the ResNet-101 [9]
model. The extracted features are those generated by layer conv4-23. The trans-
formation predictor G we select is the same as that used in [21]. It contains
convolutional layers followed by a fully connected layer to regress the parame-
ters. The transformation predictor G is a cascade of two modules predicting an
a�ne transformation and a thin plate spline (TPS) transformation. Given an
image pair, the model first estimates an a�ne transformation with 6 degrees of
freedom to obtain a rough alignment. The model then performs a second-stage
geometric estimation based on the roughly aligned image pair to predict TPS
transformation for alignment refinement. Similar to [21], we use a uniform 3⇥ 3
grid of control points for TPS, which corresponds to 3 ⇥ 3 ⇥ 2 = 18 degrees of
freedom. We initialize the feature extractor F and the transformation predictor
G from the parameters pre-trained in [22] and fine-tune F and G by using the
proposed objective function.

4 Experimental Results

Experiments are conducted in this section. We will describe the implementation
details and the experimental setting, evaluate the proposed approach, compare
it with the state-of-the-art, and analyze the results. More results are provided
in the supplementary material. The source code and the pre-trained models will
be made available to the public.

4.1 Implementation Details

We implement our model using PyTorch. The training and validation data are
both obtained from the PF-PASCAL dataset [6]. All images are resized to the
resolution 240⇥240. We perform data augmentation by horizontal flipping, ran-
dom cropping the input images, and swapping the order of images in the image
pair. Our model is trained with ADAM optimizer [15] with an initial learning
rate of 5 ⇥ 10�8. Our model is learned with the forward-backward consistency
loss and transitivity loss first to obtain a good initialization and then is fine-
tuned with the full objective function. For transitivity loss, the input triplets are
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randomly selected within a mini-batch. We sample 10⇥ 10 = 100 spatial coordi-
nates for computing the forward-backward consistency loss and the transitivity
loss. The training process takes about 2 hours on a single NVIDIA GeForce GTX
1080 graphics card.

4.2 Evaluation Metric and Datasets

We conduct the evaluation on the PF-PASCAL [6], PF-WILLOW [6], and TSS [27]
benchmark datasets.

Evaluation Metric. We evaluate the performance of the proposed method on
a semantic correspondence task. To assess the performance, we adopt the per-
centage of correct keypoints (PCK) metric [33] which measures the percentage
of keypoints whose reprojection errors are below the given threshold. The re-
projection error is the Euclidean distance d(�(p),p⇤) between the locations of
the warped keypoint �(p) and the ground truth keypoint p

⇤. The threshold is
defined as ⌧ ·max(h,w) where h and w are the height and width of the annotated
object bounding box on the image, respectively.

PF-PASCAL [6]. The PF-PASCAL dataset is selected from the PASCAL
2011 keypoint annotations [2] containing 1,351 semantically related image pairs
from 20 object categories. For images of a category, they contain di↵erent ob-
ject instances of that category with similar poses but di↵erent appearances. In
addition, the presence of background clutter makes it a challenging dataset on
semantic matching. We divide the dataset into 735 pairs for training, 308 pairs
for validation, and 308 pairs for testing. Manually annotated correspondences
are provided for each image pairs. However, under the weakly supervised set-
ting, the keypoint annotations are only used for evaluation. We compute the
PCK for each object category with ⌧ equals to 0.1.

PF-WILLOW [6]. The PF-WILLOW dataset is composed of 100 images with
900 image pairs divided into four semantically related subsets: car, duck, mo-
torbike, and wine bottle. Each subset contains images with large intra-class
variations and background clutters. For each image, there are 10 keypoint anno-
tations. We follow [7] and compute the PCK at three di↵erent thresholds with
⌧ equals to 0.05, 0.1, and 0.15, respectively.

TSS [27]. The TSS dataset comprises 400 semantically related image pairs
divided into three groups, including FG3DCar, JODS, and PASCAL. FG3DCar
contains 195 image pairs of automobiles. JODS is composed of 81 image pairs
of airplanes, cars, and horses. 124 image pairs of trains, cars, buses, bikes, and
motorbikes form the group of PASCAL. Ground truth flows for each image pair
are provided. Following [27], we densely compute the PCK over foreground object
by setting ⌧ to 0.05.

4.3 Experimental Results on the PF-PASCAL Dataset

In the following, we compare the performance of the proposed method with
the state-of-the-art approaches. Note that many of the existing methods require
manually annotated correspondences while our model can be trained using only
image-level supervision.
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Table 1: Per-class PCK on the PF-PASCAL dataset with ⌧ = 0.1.
Method aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv mean

HOG+PF-LOM [6] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

UCN [3] 64.8 58.7 42.8 59.6 47.0 42.2 61.0 45.6 49.9 52.0 48.5 49.5 53.2 72.7 53.0 41.4 83.3 49.0 73.0 66.0 55.6

VGG-16+SCNet-A [7] 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3

VGG-16+SCNet-AG [7] 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7

VGG-16+SCNet-AG+ [7] 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

VGG-16+CNNGeo [21] 79.5 80.9 69.9 61.1 57.8 77.1 84.4 55.5 48.1 83.3 37.0 54.1 58.2 70.7 51.4 41.4 60.0 44.3 55.3 30.0 62.6

ResNet-101+CNNGeo(S) [21] 83.0 82.2 81.1 50.0 57.8 79.9 92.8 77.5 44.7 85.4 28.1 69.8 65.4 77.1 64.0 65.2 100.0 50.8 44.3 54.4 69.5

ResNet-101+CNNGeo(W) [22] 84.7 88.9 80.9 55.6 76.6 89.5 93.9 79.6 52.0 85.4 28.1 71.8 67.0 75.1 66.3 70.5 100.0 62.1 62.3 61.1 74.8

Ours 85.6 89.6 82.1 83.3 85.9 92.5 93.9 80.2 52.2 85.4 55.2 75.2 64.0 77.9 67.2 73.8 100.0 65.3 69.3 61.1 78.0

Performance Evaluation. We compare our approach with the ProposalFlow [6],
the UCN [3], di↵erent versions of the SCNet [7], the CNNGeo with di↵erent fea-
ture extractors [21], and a weakly supervised approach proposed by Rocco et
al. [22]. Table 1 presents the experimental results for the PF-PASCAL dataset.
Our results show that the proposed approach compares favorably against state-
of-the-art methods, achieving an overall PCK of 78.0% (outperforming the pre-
vious best method [22] by 3.2%). The advantage of incorporating foreground
detection and enforcing cycle consistency constraints can be observed by com-
paring our approach with ResNet-101+CNNGeo(W) [22] since both methods
utilize the same feature descriptor and are trained with image-level supervision
only.

Fig. 3 presents the warping results and Fig. 5 presents the qualitative results
for the PF-PASCAL dataset. To further highlight the importance of each com-
ponent of the proposed method, we present an ablation study of our method in
the following.

Source Warp Target Source Warp Target

Fig. 3: Warping. We present the qualitative results of image warping that warps
the source image to the target image.

Ablation Study. To analyze the importance of each loss function, we con-
duct ablation experiments on the PF-PASCAL [6] dataset. We present the PCK
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Table 2: Ablation experiments.

Method mean

Baseline [22] 74.8
Baseline [22] + LM 75.5
Baseline [22] + LF 77.4
Baseline [22] + LT 77.6
Baseline [22] + LM + LF + LT 78.0

Fig. 4: PCK curves.

Fig. 5: Semantic correspondence results on the PF-PASCAL dataset.

We present the visualization of the PF-PASCAL dataset where the matched
coordinates are linked with color lines.

curves depicting the performance of the ablations under di↵erent thresholds. Ta-
ble 2 presents the mean PCK value of variants of our approach evaluated on the
PF-PASCAL dataset with ⌧ equals to 0.1 where “Baseline” represents ResNet-
101+CNNGeo(W) [22] and “Baseline + LM + LF + LT ” denotes our proposed
method. Our results show that both LF and LT substantially improve the perfor-
mance when compared with the Baseline [22]. To demonstrate the e↵ectiveness
of forward-backward consistency property, we visualize three examples in Fig. 7
where the red points indicate the key points and the green points represent the
reprojected points. The length of the yellow line represents the distance (loss)
between the corresponding points. We observe that enforcing cycle consistency
property e↵ectively encourages the network to produce consistent predictions.
However, the performance gain of using only LM is modest. We believe that the
reason is due to the evaluation protocol of datasets considers only the matching
on the foreground region. Namely, matching a background pixel in the source

Deep Semantic Matching with Foreground Detection and Cycle-Consistency 13

Table 3: Results on PF-WILLOW.

Method ⌧ = 0.05 ⌧ = 0.1 ⌧ = 0.15

SIFT Flow [16] 0.247 0.380 0.504
DAISY w/SF [29] 0.324 0.456 0.555
DeepC w/SF [35] 0.212 0.364 0.518
LIFT w/SF [34] 0.224 0.346 0.489
VGG w/SF [25] 0.324 0.456 0.555
FCSS w/SF [13] 0.354 0.532 0.681
LOM HOG [6] 0.284 0.568 0.682
UCN [3] 0.291 0.417 0.513
SCNet-A [7] 0.390 0.725 0.873
SCNet-AG [7] 0.394 0.721 0.871
SCNet-AG+ [7] 0.386 0.704 0.853
ResNet-101+CNNGeo(S) [21] 0.448 0.777 0.899
ResNet-101+CNNGeo(W) [22] 0.477 0.812 0.917
Ours 0.491 0.819 0.922

Table 4: Results on TSS. Marker ⇤ in-
dicates that the method uses extra images
from the PASCAL VOC 2007 dataset.
Method FG3DCar JODS PASCAL Avg.

HOG+PF-LOM [6] 0.786 0.653 0.531 0.657
HOG+TSS [27] 0.830 0.595 0.483 0.636
FCSS+SIFT Flow [13] 0.830 0.656 0.494 0.660
FCSS+PF-LOM [13] 0.839 0.635 0.582 0.685
HOG+OADSC [32]⇤ 0.875 0.708 0.729 0.771
FCSS+DCTM [14] 0.891 0.721 0.610 0.740
VGG-16+CNNGeo [21] 0.835 0.656 0.527 0.673
ResNet-101+CNNGeo(S) [21] 0.886 0.758 0.560 0.735
ResNet-101+CNNGeo(W) [22] 0.892 0.758 0.562 0.737
Ours 0.898 0.768 0.560 0.742

image to a foreground pixel in the target image will not be penalized. To demon-
strate the e↵ect of masked correspondence loss LM , we compute the percentage
of correctly warped pixels (i.e., pixels in the foreground/background regions that
are correctly warped into foreground/background region). As shown in Fig. 6,
our method e↵ectively reduces the errors in matching pixels from foreground to
background and vice versa. The improvement here is important in real-world
applications but is not reflected in the metric used in the standard datasets.

(a) Source Image (b) Target Image
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(c) Baseline [22]
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(d) Ours

Fig. 6: E↵ect of using the masked correspondence loss LM .

The ablation study shows that all of the proposed components play crucial
roles in producing accurate matching results. From Fig. 4, we observe that the
proposed method outperforms the best competitor [22] with a significant margin
at multiple thresholds.

4.4 Experimental Results on the PF-WILLOW and TSS Datasets

To evaluate the generalization capability, we apply the learned model trained on
the PF-PASCAL dataset to test directly on the PF-WILLOW and TSS datasets.
Namely, our model is not fine-tuned on each of the two datasets.

Results on the PF-WILLOW Dataset. Table 3 reports the quantitative
results for the PF-WILLOW dataset. We compare the performance with several
recent methods [3, 7, 13, 21, 22] as well as other methods [16, 25, 29, 34, 35] using
hand-crafted features. The results are directly taken from [7] except [21, 22].
For [21] and [22], we run their released code to obtain the figures. From Table
3, we observe that our model achieves the state-of-the-art performance with all
three thresholds.

14 Y.-C. Chen, P.-H. Huang, L.-Y. Yu, J.-B. Huang, M.-H. Yang, Y.-Y. Lin

(a) Baseline (b) Mask (c) Consistency (d) Full

Fig. 7: Cycle consistency property. We present the visualization that demon-
strates the e↵ect of forward-backward consistency loss where the red points indi-
cate the keypoints while the green points denote the reprojected points. Yellow
line represents the distance (loss) between the linked points.

Results on the TSS Dataset. We also evaluate the performance on the TSS
dataset. The quantitative results are presented in Table 4. It can be observed
that the proposed method achieves the state-of-the-art performance on two of the
three groups of the TSS dataset: FG3DCar and JODS. Our results are slightly
worse than that in [32] in the PASCAL group. However, the method in [32] also
uses additional images from the PASCAL VOC 2007 dataset. We report their
results for completeness. Under the same experimental settings, the proposed
method performs favorably against existing approaches.

5 Conclusions

We have addressed the problem of semantic matching by presenting a weakly-
supervised and end-to-end trainable network. The core technical novelty lies in
the explicit modeling of a foreground detection module to suppress the e↵ect of
background clutter and exploiting the cycle consistency constraints so that the
predicted geometric transformations are geometrically plausible and consistent
across multiple images. The network training requires only training image pairs
with image-level supervision and thus significantly alleviates the cost of con-
structing and labeling large-scale training datasets. Experimental results demon-

Deep Semantic Matching with Foreground Detection and Cycle-Consistency 15

strate that our approach performs favorably against existing semantic matching
algorithms on several standard benchmarks. Moving forward, we believe that the
semantic matching network can be further integrated to other computer vision
tasks, e.g., supporting 3D semantic object reconstruction and fine-grained visual
recognition.
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