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To accomplish this task, we present an end-to-end traiuable network which
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3.2 Objective Function
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Results on the TSS Dataset. We also evaluate the performance on the TSS
dataset. The quantitative results are presented in Table 4. It can be observed

three groups of the TSS dataset: FGIDCar and JODS. Our results are slightly
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training objective is dofined by

L= Lu+ L+ Lr, 0
where A and Ar are hyper-parameters used to control the relative importance
of the respective loss functions. The detais of each loss function are described
in the followiag.

8.3 Masked Correspondence Loss
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