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Overview

In this supplementary document, we provide additional details and experimental
results to complement the main manuscript. We will make the training and
evaluation scripts publicly available for reproducible research. Our supplementary
material consists of the following.

– We describe the objective for model training for each task. (Section 1)
– We describe the implementation details of the Neural Architecture Search

training and model training. (Section 2)
– We describe the details of the exponential sliding window used when evaluat-

ing the performance of image denoising. (Section 3)
– We present the searched network architecture for each task and discuss the

insights from the discovered architecture. (Section 4)
– We include the analysis of the performance gain over DIP [9]. (Section 5)
– We provide extensive visual comparisons with the state-of-the-art methods

on all the tasks in the attached index.html file.

1 Objective for Model Training

In this section, we describe the objective functions used for each task.

1.1 Objective function for image super-resolution, inpainting, and
denoising

Given an image x in the training set, we first generate a degenerated version x0
by adding noise, downsampling, or dropping certain pixels from x depending on
the task of interest. That is, for image denoising, x0 ∈ RH×W×3 denotes the noisy
version of the clean image x, for single image super-resolution, x0 ∈ RH

r ×
W
r ×3

denotes the low-resolution version of x where r represents the downsampling
ratio, and for image inpainting, x0 ∈ RH×W×1 denotes the occluded version of x.
We then sample a noise image z ∈ RH×W×C and enforce the searched network
fθ to map the noise image z to the denoised, high-resolution, or inpainted version
of x0, i.e., map the noise image z to x.
? equal contribution
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To achieve this, we follow DIP [9] and optimize different objectives for each
task. For single image super-resolution, we train the network using the objective
function:

Lsuper−resolution(θ) = ‖d(fθ(z))− x0‖22, (1)

where d(·) is a downsampling operator that downsamples the network’s output
fθ(z) ∈ RH×W×3 (i.e., the high-resolution image) to the lower resolution version
d(fθ(z)) ∈ RH

r ×
W
r ×3.

For image inpainting, we train the network using the objective function:

Linpainting(θ) = ‖(fθ(z)− x0)⊗m‖22, (2)

where fθ(z) ∈ RH×W×1 is the inpainted image, m is the binary mask associated
with the occluded image xo, and ⊗ is the pixel-wise multiplication between the
two operands.

For image denoising, we train the network using the objective function:

Ldenoising(θ) = ‖fθ(z)− x0‖22, (3)

where fθ(z) ∈ RH×W×3 is the denoised (clean) image.

1.2 Objective function for image dehazing

As mentioned in DoubleDIP [2], a hazy image I can be modeled by three
components (1) the airlight map A, (2) the haze-free image J , and (3) the
transmission map t:

I = t⊗ J + (1− t)⊗A, (4)

where ⊗ denotes pixel-wise multiplication operator.
To recover the airlight map A, the haze-free image J , and the transmission

map t, we follow DoubleDIP [2] and leverage three DIP [9] models fθA , fθJ , fθt ,
each of which recovers one of the three components.

To achieve image dehazing using the DoubleDIP framework [2], we sample
three noise images zt, zJ , and zA. We then enforce each of the DIP models to
map the sampled noise image to the corresponding components, i.e., enforce fθA
to map zA to A, fθJ to map zJ to J , and fθt to map zt to t. Specifically, we
follow DoubleDIP [2] and optimize the objective:

Ldehazing(θA, θJ , θt) =
∥∥∥I−(fθt(zt)⊗ fθJ (zJ)+ (1− fθt(zt))⊗ fθA(zA))∥∥∥2

2
, (5)

where fθA(zA) is the estimated airlight map, fθJ (zJ) is the estimated haze-free
image, and fθt(zt) is the estimated transmission map.

1.3 Objective function for matrix factorization

we follow CompMirror [1] and show how to leverage deep image prior for matrix
factorization. Specifically, given an image X ∈ Rh×w, we aim to factorize X into
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two components L ∈ Rh×q and T ∈ Rq×w, i.e., X = LT . To achieve this, we
follow CompMirror [1] and adopt two randomly initialized CNN models fθL and
fθT , each of which aims at recovering one of the factorized components.

To achieve matrix factorization, we first sample two noise images zL ∈ Rl and
zT ∈ Rt. We then enforce each of the CNN models to map the associated noise
image to the corresponding factorized image, i.e., enforce fθL to map zL to L
and fθT to map zT to T . We follow CompMirror [1] and optimize the objective:

Lmatrix−factorization(θL, θT ) = ‖fθL(zL)fθT (zT )−X‖22, (6)

where fθL(zL) ∈ Rh×q and fθT (zT ) ∈ Rq×w are the factorized images.

1.4 Objective for unpaired image-to-image translation

For the task of unpaired image-to-image translation, we assume that we are
given two sets (domains) of images X and Y , two generators GX→Y and GY→X ,
and two discriminators DX and DY . The two generators aim at translating
images from one domain to the other. The two discriminators aim at aligning the
distributions between images in the corresponding domain and those translated
to that domain.

Following CycleGAN [14], the full training objective L for achieving the
unpaired image-to-image translation task is composed of two loss functions. First,
the adversarial loss Ladv aligns the distributions between the translated images
and images in that corresponding domain. Second, the reconstruction loss Lrec

enforces the consistency when translating an image from one domain to the other,
followed by a reverse translation (i.e., cycle consistency for self reconstruction).
Specifically, the full training objective L is defined as:

L = Ladv(X,Y,GY→X , DX)

+ Ladv(Y,X,GX→Y , DY )

+ λrec · Lrec(X,Y,GX→Y , GY→X),

(7)

where λrec is the hyperparameter used to control the relative importance of the
reconstruction loss Lrec.

The adversarial loss Ladv in the X domain is defined as:

Ladv(X,Y,GY→X , DX) = Ex∼X [log(DX(x))]

+ Ey∼Y [log(1−DX(GY→X(y)))].
(8)

Similarly, the adversarial loss in the Y domain is Ladv(Y,X,GX→Y , DY ).
The reconstruction loss Lrec is defined as:

Lrec(X,Y,GX→Y , GY→X) = Ex∼X [x−GY→X(GX→Y (x))]

+ Ey∼Y [y −GX→Y (GY→X(y))].
(9)

Following CycleGAN [14], we set λrec = 10 in the unpaired image-to-image
translation experiments.
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2 Details of NAS Training and Model Training

To search for the optimal network architecture f∗θ for the task of interest (e.g.,
single image super-resolution), we leverage existing neural architecture search
techniques (an RNN-based controller trained with reinforcement learning) [4,5,15]
and adopt PSNR as our reward to search for an improved network structure on
a held-out training set.

We denote the parameters of the RNN controller as φ and the parameters
of the candidate network architecture as θ. The training process is composed of
two alternating phases: 1) train the model weights θ of the candidate network
architecture with weights φ of the RNN controller fixed and 2) train φ of the
RNN controller with θ of the candidate network architecture fixed. We summarize
the training algorithm in Algorithm 1.

In the first phase, we train the parameters θ of the candidate network archi-
tecture with parameters φ of the RNN controller fixed. First, the RNN controller
samples a candidate network architecture fθ with random initialization. We
then train the sampled candidate model with Equation 1 (for single image
super-resolution), Equation 2 (for image inpainting), or Equation 3 (for image
denoising).

In the second phase, we train the parameters φ of the RNN controller with
the parameters θ of the candidate network architecture fixed. We first compute
the PSNR between the restored prediction and the ground truth as the reward
and apply reinforcement learning to update the RNN controller.

The RNN controller is updated using the Adam optimizer via REINFORCE,
while the sampled candidate model is updated using the SGD optimizer. We
set the number of epochs to 1, 000. For single image super-resolution and image
denoising, we set the number of iterations for each image to 6, 000. For image
inpainting, the number of iterations for each image is set to 12, 000.

3 Exponential Sliding Window

For image denoising, we follow DIP [9] and average the restored predictions
{xt}100t=1 obtained in the last 100 iterations with an exponential sliding window
(moving average) to obtain the final result x∗:

x∗ =

100∑
t=1

xt · γ101−t · (1− γ)t−1, (10)

where xt is the restored prediction obtained at the tth iteration, and γ is the
weight. We follow DIP [9] and set γ = 0.99.

4 Searched Architectures

We present and discuss the searched architecture for each task in this section.



NAS-DIP: Learning Deep Image Prior with Neural Architecture Search 5

Algorithm 1: Pseudo code of NAS-DIP.
1 for epoch i ∈ 1 . . . num_of_epochs do
2 for each noise image j ∈ 1 . . . num_of_images do
3 Randomly initialize the parameters θ of the sampled model.
4 for iter k ∈ 1 . . . num_of_iterations do
5 Fix the parameters φ of the RNN controller.
6 Optimize the sampled candidate model with Equation (1), (2), or (3),

depending on the task of interest.
7 if iter % 1000 == 0 then
8 Fix the parameters θ of the sampled candidate model.
9 Compute the PSNR between the restored prediction and the

ground truth as the reward.
10 Free the parameters φ of the RNN controller.
11 Use reinforcement learning with the computed reward to update

the RNN controller.
12 Sample a new candidate model with random initialization.

4.1 Searched upsampling cell

– Image super-resolution: bicubic upsampling → depth-wise convolution [3,
6, 7] with a kernel size of 5× 5 → LeakyReLU with slope 0.2.

– Image denoising: nearest neighbor upsampling→ add every N consecutive
channels [10,11] with a kernel size of 5× 5 → LeakyReLU with slope 0.2.

– Image inpainting: bicubic upsampling → transposed convolution with a
kernel size of 7× 7 → LeakyReLU with slope 0.2.

There are several observations from the searched upsampling cells. First, the
optimal upsampling cell for each task is different. Second, all three upsampling
cells choose to use a LeakyReLU with a slope of 0.2 as the activation. This
suggests that avoiding “dying ReLU" is important for image restoration problems.
Third, only the task of denoising adopts the nearest neighbor upsampling. We
believe this is because bicubic upsampling may produce overly smoothed feature
maps.

4.2 Searched cross-scale residual connections

Figure 1 presents the searched cross-scale residual connections for each task. From
left to right are the discovered cross-level feature connections for single image
super-resolution, image denoising, and image inpainting. There are a couple of
interesting cross-level connections discovered by the neural architecture search
process.
Image super-resolution. For the single image super-resolution task, we observe
that there is an additional connection from a feature map in the encoder to
a lower resolution layer in the decoder. This could potentially be an effective
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Single image
super-resolution Image denoising Image inpainting

Fig. 1: The discovered pattern of cross-scale residual connections. Fig-
ures from left to right present the discovered pattern of cross-scale residual
connections for single image super-resolution, image denoising, and image in-
painting, respectively.

strategy for super-resolving feature maps by reusing higher-level features from
the encoder (not just from the features at the same level as in the standard U-Net
architecture).

Image denoising. For the image denoising task, we observe that all the lower
level feature maps in the encoder are reused in all the other (same or higher)
levels in the decoder. This empirical discovery shares a similar high-level spirit
with several designs in object detection and semantic segmentation architectures.
In particular, the fusion of lower level features with higher-level ones resembles
the feature pyramid network [8] and pyramid pooling module [13].

Image inpainting. For the image inpainting task, the searched architecture
also shows an interesting connection pattern that combines features from both
higher level and lower level feature maps from the encoder (in addition to the
same-level connection in U-Net).

Table 1: Comparison to DIP [9]. We report the number of parameters and
the average PSNR results on the Set14 dataset [12] with 8× scaling factor.

Method # params Avg. PSNR

DIP [9] 1.3M 24.15
DIP-large [9] 1.78M 24.31
Ours 1.8M 24.59
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5 Analysis of the Performance Gain over Deep Image
Prior

As our searched architecture contains more number of parameters than that in
the DIP [9] model, one natural question is: does the performance improvement
shown by our architecture solely depend on the increased number of parameters?

To address this question, we increase the number of parameters in DIP [9] by in-
creasing the number of channels in the decoder of DIP from {128, 128, 128, 128, 128}
to {256, 256, 256, 256, 256}. We denote this model as DIP-large. With this modi-
fication, the number of parameters of the DIP-large model is comparable to our
model.

Table 1 reports the experimental results on the Set14 dataset [12] with 8×
scaling factor. As we increase the model capacity of the DIP model, we do
observe that the performance improves from 24.15 to 24.31 (PSNR). However,
the improvement is not as significant as our approach. The result suggests that the
performance gain lies in the design of the network structure, i.e., the upsampling
cell and the cross-scale residual connections, not solely the number of network
parameters.
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